
The Conjugate Gradient Method

Will Woolfenden

November 12, 2023

1 Introduction

The Conjugate Gradient (CG) method is a method for efficiently solving a system of linear equations.
It is efficient because time complexity is reduced from other methods, such as gradient descent or
Newton’s method. Linear systems with sparse matrices are common when we apply finite difference
methods to solve boundary value problems. In this report we look at solving these linear systems,
providing finite difference approximations to Poisson’s equation in 1D u′′(s) = g(s) and in 2D
∇2u(s, t) = 1.

2 Methods, Results and Verification

2.1 Conjugate Gradient

In CG, we start with a guess x0 to solve Ax = b. At every step, we compute ri = Axi − b with
stopping criterion ||r|| < ε. Our search vectors pi are chosen such that they obey pT

j Api for i ̸= j,

with p0 = r0. We perform this with a Gram-Schmidt orthogonalisation1 with the inner product
⟨u,v⟩A = uTAv. Each iteration performs

xi+1 = xi +
rTi ri

pT
i Api

pi

ri+1 = ri −
rTi ri

pT
i Api

Api

pi+1 = ri+1 +
rTi+1ri+1

rTi ri
pi.

The residual vector ri describes the distance of xi to the solution x∗ which satisfies Ax∗ = b. The
vectors pi are the search directions of the iteration. For every iteration, we compute the distance
we need to travel along each search direction, by intuitively realising that at a point xi, the vector
from xi to the optimiser x∗ is A-orthogonal to all the search directions we have already traversed.

2.2 Finite Difference Methods: Poisson’s Equation

We want to form a finite difference approximation to Poisson’s equation in 1D u′′(s) = g(s), subject
to boundary conditions u(0) = u(1) = 0. We discretise s into n + 2 points2 in the interval [0, 1]

1this requires A to be n× n with all vectors being n-vectors.
2n points excluding 0 and 1.

1

where sk = kh, k = 0, 1, 2, . . . n + 1 and h = 1/(n + 1). The finite difference approximation to the
second derivative is

u′′(s) ≈ u(s− h)− 2u(s) + u(s+ h)

h2
(1)

which can be seen by the Taylor series expansions of the u(s) terms. Write uk = u(sk), gk = g(sk).
Boundary conditions are u0 = un = 0. We obtain the linear system

−2 1
1 −2 1

1
. . .

. . .

. . .
. . . 1
1 −2 1

1 −2

u1

u2

...

...
un−1

un

= −h2

g1
g2
...
...

gn−1

gn

.

This is a linear system of the form Ax = b which we can solve using the CG method. Consider the
case where g is the constant function g(s) = −1, and where A is 5× 5. The system in full, changing
sign, is

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

u1

u2

u3

u4

u5

 =
1

(n+ 1)2

1
1
1
1
1

 .

Our code produces tridiagonal convergence 0611.txt:

Time t | L2 norm | LInf norm

0 | 2.22448 | 1.97222

5.4392e-05 | 0.588795 | 0.397175

6.394e-05 | 0.233913 | 0.188237

7.0762e-05 | 0.10518 | 0.0963511

7.7545e-05 | 0.00941914 | 0.00515077

8.3386e-05 | 2.94053e-16 | 1.73472e-16

which claims to solve the system in exactly 5 iterations. This is appropriate for CG, which is
designed to converge in no more iterations than the size of the system [3]. Our program prints the
solution x = (0.0694444, 0.111111, 0.125, 0.111111, 0.0694444). Using the solver in Octave verifies
this computation, shown in B.1, hence it is the true solution of the linear system.

The ODE we are solving is u′′(s) = −1. By direct integration, the general solution is u(s) =
Cs2 + Ds for constants C,D. Plugging in boundary conditions, we obtain the particular solution
u(s) = −s(s− 1)/2 in closed form. See Figure 1 for a comparison.

2.3 Perturbed Tridiagonal

We perturb the system such that the main diagonal contains 2 + α instead of 2, for some positive
real constant α. In this case, we impose b to be the vector with all entries bi = 2.5, equivalently
all gi = −5(n+ 1)2/2. Figure 2 illustrates the convergence of these tridiagonal systems. We notice
that, as the entries on the main diagonal grow, the effectiveness of the iterations increases. The
convergence of the CG method is O(m

√
κ), where m is the number of non-zero entries in the matrix

and κ is the condition number for any choice of norm [4]. As the entries on the diagonal grow, A

2

0 0.2 0.4 0.6 0.8 1

s

0

0.02

0.04

0.06

0.08

0.1

0.12

u
(s

)

Closed form

CG solution

Figure 1: Comparison of the closed form solution to the ODE, using fplot(), and the n = 5 finite
difference approximation from solving the system with CG.

0 0.2 0.4 0.6 0.8 1 1.2

10
-4

0

2

4

6

8

10

12

d=2

d=3

d=6

d=12

Figure 2: Convergence graphs for different size tridiagonal systems. The solutions converge more
rapidly for larger diagonal entries. The matrices A are the same as earlier except for 2 + α on the
diagonal, and the vectors b are bk = 2.5 for all k.

3

0 0.2 0.4 0.6 0.8 1 1.2

10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
2

 = 25

n
2

 = 64

n
2

 = 81

n
2

 = 100

Figure 3: Convergence graphs for the CG method applied to the linear system with the Laplacian
matrix. Each path attains a unique minimum and maximum which bound a region of inflection.

becomes closer to a diagonal matrix, and its condition number decreases, hence CG is more effective.
Important to note is that our implementation does not entirely match this claim on the order of the
CG method. Our MMatrix and MVector classes are not optimised for speed. For example, we are
not optimised for multiplying with a sparse matrix, which would allow us to ignore all the entries
containing 0.

2.4 Poisson’s Equation in 2D

We are now interested in the problem in two variables ∇2u(s, t) = 1, with boundary conditions
u(s, 0) = u(s, 1) = u(0, t) = u(1, t) = 0. By the finite difference method, the matrix is of the form

(A)ij =

4 if i = j

−1 if |i− j| = n

−1 if |i− j| = 1 and

(i+ j) mod (2n) ̸= 2n− 1

0 otherwise

(2)

which we will refer to as the Laplacian matrix. Like before, b = bi = 1/(n + 1)2. See Figure 3,
which shows a selection of iterations for the 2D approximation to Poisson’s equation. In Figures 4
and 5 we show the impacts of scaling the matrix size. Particularly in Figure 5, we have shown that
our implementation is O(d3), where d = n2 is the size of the system. Methods for solving a system
of n linear equations are often O(n3) [2]. Solutions to Poisson’s equation in 2D are shown in Figure

4

0 500 1000 1500 2000 2500

20

40

60

80

100

120

Figure 4: Number of iterations required for convergence for different matrix sizes. The curve appears
logarithmic

0 500 1000 1500 2000 2500
0

0.5

1

1.5

Results from CG

p(n) = O(n
3

)

Figure 5: Running time, measured in seconds, of the C++ implementation of the CG method,
against the size of the linear system we are solving. The polynomial approximation to our results
was performed in MATLAB, and the fitting was unsuccessful for polynomials of degree < 3. The
polynomial is technically O(n6) agreeing with our definition of n such that the system is n2 × n2,
but it is a degree 3 polynomial on the domain.

5

n=5

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5
n=10

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

n=20

5 10 15 20

2

4

6

8

10

12

14

16

18

20
n=50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Computed solutions to Poisson's equation in 2D via the CG method

Figure 6: Solutions to Poisson’s equation in 2D computed as a solution to a system of linear equations
via. the CG method. As n increases, our results converge and we see negligible change between
n = 20 and n = 50. Blue contours are lower in magnitude than the yellow curves near the centres
of the images.

6

6, where we have shown a convergence of results as n increases. The boundary condition is attained
on the horizontal boundaries.

2.5 Properties of the Conjugate Gradient Method

CG is only stable in exact arithmetic for symmetric, positive definite matrices [1]. As such, the
modified inner product from earlier of a vector with itself ⟨p,p⟩A = pTAp is always positive.
Furthermore if A is not symmetric then

⟨u,v⟩A = ⟨u,Av⟩
= ⟨ATu,v⟩
̸= ⟨Au,v⟩

is not an inner product.
All the stencil matrices we have looked at are symmetric (by inspection) and positive definite

since they have entirely positive eigenvalues. This is a necessary criterion for CG to succeed. Floating
point arithmetic may lead to rounding errors during computation, meaning that some methods will
not succeed as they may in exact arithmetic.

Given the 5× 5 matrix

A =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

we can compute its inverse

A−1 =

5
6

2
3

1
2

1
3

1
6

2
3

4
3 1 2

3
1
3

1
2 1 3

2 1 1
2

1
3

2
3 1 4

3
2
3

1
6

1
3

1
2

2
3

5
6

and find the condition number ||A||F ||A−1||F ≈ 20.7. The identity matrix has the minimum con-
dition number 1. As we saw earlier, the condition number affects the time of the CG method.
Particularly, Figure 2 showed that for larger diagonal entries, the method converges faster. For
larger diagonal entries, the condition number is smaller. Hence a large condition number can be a
strong factor affecting the run time of CG.

3 Conclusion

We can use the conjugate gradient method to solve a linear system Ax = b for a symmetric positive
definite matrix. Uniquely, CG will always converge within the number of iterations that there
are rows/columns in the matrix. It does this by computing search directions which are conjugate
under A and traversing them, computing how far each direction must be travelled by. Conjugate
Gradient may be favourable to methods such as gradient descent or other options when we can
guarantee stability. The time complexity of the method is improved for a sparse and also a well-
conditioned matrix. Our results show the effectiveness of the CG method for solving finite difference
approximations to differential equations in one and two dimensions, where we have been able to
show accuracy and convergence of our results.

7

References

[1] Anne Greenbaum. “Chapter 4 - Effects of Finite Precision Arithmetic”. In: Iterative methods
for solving linear systems. SIAM, 1997.

[2] C. D. Meyer. “Linear Equations”. In: Matrix analysis and applied linear algebra. Society for
Industrial and Applied Mathematics, 2000, pp. 14–16.

[3] Jonathan Richard Shewchuk. “An introduction to the conjugate gradient method without the
agonizing pain”. In: (1994), pp. 30–31.

[4] Jonathan Richard Shewchuk. “An introduction to the conjugate gradient method without the
agonizing pain”. In: (1994), pp. 37–38.

A Appendix - C++ Code Implementations

A.1 Compiled Code

A.1.1 main.cpp

1 #include <vector >

2 #include <algorithm >

3 #include <iostream >

4 #include <fstream >

5 #include <cmath >

6 #include <iomanip >

7 #include <string >

8 #include <chrono >

9 #include <cstddef >

10 #include <ctime >

11 #include <ratio >

12

13 #include "mvector.h"

14 #include "mmatrix.h"

15

16 using namespace std;

17 using namespace chrono;

18

19 MVector conjugateGradientSolve(const MMatrix&, const MVector&, const MVector&, const

string filename);

20 void computeLaplacian(int n, const string& filename);

21

22 int main()

23 {

24 MVector b(5, 1.0/36.0);

25

26 MMatrix A(5, 5);

27 makeTridiagonal(A, 2, -1);

28

29 // starting guess is elementary basis vector

30 MVector x_0 = {1,0,0,0,0};

31

32 // regular 5x5 solve (3.35 -3.36)

33 MVector x = conjugateGradientSolve(A, b, x_0 , "tridiagonal_convergence_0611.txt")

;

34 cout << x << endl;

35

36 MMatrix A1(5, 5), A2(5, 5), A3(5, 5);

8

37 makeTridiagonal(A1, 2+1, -1);

38 makeTridiagonal(A2, 2+4, -1);

39 makeTridiagonal(A3, 2+10, -1);

40

41 MVector b1(5, 2.5);

42

43 // perform CG for different values of alpha (3.37)

44 x = conjugateGradientSolve(A1 , b1, x_0 , "tridiagonal_a1_conv.txt");

45 x = conjugateGradientSolve(A2 , b1, x_0 , "tridiagonal_a4_conv.txt");

46 x = conjugateGradientSolve(A3 , b1, x_0 , "tridiagonal_a10_conv.txt");

47

48 MMatrix P(16, 16);

49 makeLaplacian(P, 4, -1);

50 cout << P << endl;

51

52 // Laplace ’s equation (3.39)

53 computeLaplacian (5, "lap_conv_n5_0611.txt");

54 computeLaplacian (6, "lap_conv_n6_0611.txt");

55 computeLaplacian (7, "lap_conv_n7_0611.txt");

56 computeLaplacian (8, "lap_conv_n8_0611.txt");

57 computeLaplacian (9, "lap_conv_n9_0611.txt");

58 computeLaplacian (10, "lap_conv_n10_0611.txt");

59 computeLaplacian (20, "lap_conv_n20_0611.txt");

60 computeLaplacian (50, "lap_conv_n50_0611.txt");

61

62

63 return 0;

64 }

65

66 // conjugate gradient method implementation

67 MVector conjugateGradientSolve(const MMatrix& A, const MVector& b, const MVector& x_0

, const string filename = "iteration.txt")

68 {

69 // initialisations

70 int maxIterations = 1000;

71 double tolerance = 1e-6;

72

73 if (A.Rows() != A.Cols())

74 {

75 throw invalid_argument("error: matrix is not square");

76 }

77 int dim = A.Rows();

78

79 MVector rPrev(dim), pPrev(dim), xPrev(dim), r(dim), p(dim), x(dim);

80 double alpha , beta;

81

82 // solver writes a file , an optional filename argument is given

83 ofstream of;

84 int w = 12;

85 of.open(filename);

86 if (!of)

87 {

88 throw invalid_argument("error: failed to open file");

89 }

90 of << setw(w) << "Time t" << " | "

91 << setw(w) << "L2 norm" << " | "

92 << setw(w) << "LInf norm" << "\n";

93

94 xPrev = x_0;

95 rPrev = b - A*xPrev;

9

96 pPrev = rPrev;

97

98 high_resolution_clock :: time_point t1 = high_resolution_clock ::now();

99

100 of << setw(w) << 0 << " | "

101 << setw(w) << rPrev.L2Norm () << " | "

102 << setw(w) << rPrev.LInfNorm () << "\n";

103

104 for (int iter =0; iter <maxIterations; iter ++)

105 {

106 // ... calculate new values for x and r here ...

107 alpha = dot(rPrev , rPrev)/dot(pPrev , A*pPrev);

108 x = xPrev + alpha*pPrev;

109 r = rPrev - alpha *(A*pPrev);

110

111 // write the iteration

112 high_resolution_clock :: time_point t2 = high_resolution_clock ::now();

113 duration <double > time_span = duration_cast <duration <double >>(t2 - t1);

114

115 of << setw (10) << time_span.count() << " | "

116 << setw (10) << r.L2Norm () << " | "

117 << setw (10) << r.LInfNorm () << "\n";

118

119 // check if solution is accurate enough

120 if (r.L2Norm () < tolerance) break;

121

122 // ... calculate new conjugate vector p here ...

123 beta = dot(r, r)/dot(rPrev , rPrev);

124 p = r + beta*pPrev;

125

126 // step the placeholder variables for the next iteration

127 pPrev = p;

128 rPrev = r;

129 xPrev = x;

130 }

131

132 of.close ();

133 return x;

134 }

135

136 // procedure to compute a solution using the conjugate gradient method , given the

value n and the file to write to

137 void computeLaplacian(int n, const string& filename)

138 {

139 MMatrix H(n*n, n*n);

140 makeLaplacian(H, 4, -1);

141

142 MVector a(n*n, 1.0/ pow(n+1, 2));

143 // initial guess is always the unit vector

144 MVector x(n*n);

145 x[0] = 1;

146

147 conjugateGradientSolve(H, a, x, filename);

148 }

A.1.2 mmatrix.cpp

1 #include <vector >

2 #include <iostream >

3 #include <iomanip >

4 #include <ios >

10

5 #include <algorithm >

6 #include <cmath >

7

8 #include "mmatrix.h"

9 #include "mvector.h"

10

11 using namespace std;

12

13 MVector operator *(const MMatrix& A, const MVector& v)

14 {

15 // check compatibility

16 if (A.Cols() != v.size())

17 {

18 cout << "wrong dims" << endl;

19 exception e;

20 throw e;

21 }

22 // initialise output vector

23 int vout_size = A.Rows();

24 MVector vout = MVector(vout_size);

25

26 for (int i = 0; i < A.Rows(); i++)

27 {

28 // sum across j

29 double sum = 0;

30 for (int j = 0; j < A.Cols(); j++)

31 {

32 sum += A(i, j)*v[j];

33 }

34 vout[i] = sum;

35 }

36 return vout;

37 }

38

39 ostream& operator <<(ostream& os, const MMatrix& A)

40 {

41 for (int i = 0; i < A.Rows(); i++)

42 {

43 os << "| ";

44 for (int j = 0; j < A.Cols(); j++)

45 {

46 os << setw (3) << A(i, j) << " ";

47 }

48 os << "|\n";

49 }

50 return os;

51 }

52

53 void makeTridiagonal(MMatrix& A, double d, double bd)

54 {

55 /*

56 takes the arguments for the diagonal and band , and passes the matrix by reference.

57 A must already be the size we want , but its entries will be entirely overwritten.

58 */

59 if (A.Rows() != A.Cols())

60 {

61 throw invalid_argument("error: matrix not square");

62 }

63 for (int i = 0; i < A.Rows(); i++)

64 {

11

65 for (int j = 0; j < A.Cols(); j++)

66 {

67 if (i == j)

68 {

69 A(i, j) = d;

70 }

71 else if (abs(i - j) == 1)

72 {

73 A(i, j) = bd;

74 }

75 else

76 {

77 A(i, j) = 0;

78 }

79 }

80 }

81 }

82

83 void makeLaplacian(MMatrix& A, double d, double bd)

84 {

85 /*

86 behaves similarly to makeTridiagonal in its arguments. for solutions to the

Laplacian equation.

87 */

88 if (A.Rows() != A.Cols())

89 {

90 throw invalid_argument("error: matrix not square");

91 }

92 double sz = sqrt(A.Rows());

93 if (floor(sz) != sz)

94 {

95 // A must be n^2 by n^2

96 throw invalid_argument("error: matrix is not of dimension n^2.n^2");

97 }

98 int n = sz;

99 for (int i = 0; i < A.Rows(); i++)

100 {

101 for (int j = 0; j < A.Cols(); j++)

102 {

103 if (i == j)

104 {

105 A(i, j) = d;

106 }

107 else if (abs(i - j) == n)

108 {

109 A(i, j) = bd;

110 }

111 else if ((abs(i - j) == 1) && ((i + j) % 2*n != 2*n - 1))

112 {

113 A(i, j) = bd;

114 }

115 else

116 {

117 A(i, j) = 0;

118 }

119 }

120 }

121 }

12

A.1.3 mvector.cpp

1 #include <vector >

2 #include <iostream >

3 #include <iomanip >

4 #include <algorithm >

5 #include <cmath >

6

7 #include "mvector.h"

8

9 using namespace std;

10

11 // constructors in header

12

13 MVector operator *(const double& lhs , const MVector& rhs)

14 {

15 MVector temp = rhs;

16 for (int i = 0; i < temp.size(); i++)

17 {

18 temp[i] *= lhs;

19 }

20 return temp;

21 }

22

23 MVector operator *(const MVector& lhs , const double& rhs)

24 {

25 return rhs*lhs;

26 }

27

28 MVector operator +(const MVector& lhs , const MVector& rhs)

29 {

30 if (lhs.size() != rhs.size())

31 {

32 exception e;

33 throw e;

34 }

35 MVector temp(lhs.size());

36 for (int i = 0; i < temp.size(); i++)

37 {

38 temp[i] = lhs[i] + rhs[i];

39 }

40 return temp;

41 }

42

43 MVector operator -(const MVector& lhs , const MVector& rhs)

44 {

45 return lhs+(-1*rhs);

46 }

47

48 // alternative overload such that given MVector v, -v is allowed

49 MVector MVector ::operator -()

50 {

51 MVector vec(v.size());

52 for (int i = 0; i < vec.size(); i++)

53 {

54 vec[i] = -v[i];

55 }

56 return vec;

57 }

58

13

59 MVector operator /(const MVector& lhs , const double& rhs)

60 {

61 return (1/rhs)*lhs;

62 }

63

64 ostream& operator <<(ostream& os, const MVector& v)

65 {

66 int n = v.size();

67 os << "(";

68 for (int i = 0; i < n-1; i++)

69 {

70 os << setw (10) << v[i] << ", ";

71 }

72 os << v[n-1];

73 os << ")";

74 return os;

75 }

76

77 double MVector :: LInfNorm () const

78 {

79 double maxAbs = 0;

80 size_t s = size();

81 for (int i=0; i<s; i++)

82 {

83 maxAbs = max(abs(v[i]), maxAbs);

84 }

85 return maxAbs;

86 }

87

88 double MVector :: L2Norm () const

89 {

90 double sum = 0;

91 for (int i = 0; i < v.size(); i++)

92 {

93 sum += v[i]*v[i];

94 }

95 return sqrt(sum);

96 }

97

98 double dot(const MVector& lhs , const MVector& rhs)

99 {

100 if (lhs.size() != rhs.size())

101 {

102 throw invalid_argument("error: dot product not defined for vectors of non -equal

dimension");

103 }

104 double sum = 0;

105 for (int i = 0; i < lhs.size(); i++)

106 {

107 sum += lhs[i]*rhs[i];

108 }

109 return sum;

110 }

A.2 Included Code

A.2.1 mmatrix.h

1 ifndef MMATRIX_H // the ’include guard’

14

2 #define MMATRIX_H

3

4 #include <vector >

5 #include <iostream >

6 #include "mvector.h"

7

8 using namespace std;

9

10 // Class that represents a mathematical matrix

11 class MMatrix

12 {

13 public:

14 // constructors

15 MMatrix () : nRows (0), nCols (0) {}

16 MMatrix(int n, int m, double x = 0) : nRows(n), nCols(m), A(n * m, x) {}

17

18 // set all matrix entries equal to a double

19 MMatrix &operator =(double x)

20 {

21 for (unsigned i = 0; i < nRows * nCols; i++) A[i] = x;

22 return *this;

23 }

24

25 // access element , indexed by (row , column) [rvalue]

26 double operator ()(int i, int j) const

27 {

28 return A[j + i * nCols];

29 }

30

31 // access element , indexed by (row , column) [lvalue]

32 double &operator ()(int i, int j)

33 {

34 return A[j + i * nCols];

35 }

36

37 friend MVector operator *(const MMatrix& A, const MVector& v);

38 friend ostream& operator <<(ostream& os, const MMatrix& A);

39

40 // size of matrix

41 int Rows() const { return nRows; }

42 int Cols() const { return nCols; }

43

44 private:

45 unsigned int nRows , nCols;

46 vector <double > A;

47 };

48

49 void makeTridiagonal(MMatrix& A, double d, double bd);

50 void makeLaplacian(MMatrix& A, double d, double bd);

51

52 #endif

A.2.2 mvector.h

1 #ifndef MVECTOR_H // the ’include guard ’

2 #define MVECTOR_H // see C++ Primer Sec. 2.9.2

3

4 #include <vector >

5

15

6 using namespace std;

7

8 // Class that represents a mathematical vector

9 class MVector

10 {

11 public:

12 // constructors

13 MVector () {}

14 MVector(int n) : v(n) {}

15 MVector(int n, double x) : v(n, x) {}

16 MVector(initializer_list <double > l) : v(l) {}

17

18 // access element (lvalue) (see example sheet 5, q5.6)

19 double &operator [](int index)

20 {

21 return v[index];

22 }

23

24 // access element (rvalue) (see example sheet 5, q5.7)

25 double operator [](int index) const {

26 return v[index];

27 }

28

29 // operator overloads

30 MVector operator -();

31

32 friend MVector operator *(const double& lhs , const MVector& rhs);

33 friend MVector operator *(const MVector& lhs , const double& rhs);

34 friend MVector operator +(const MVector& lhs , const MVector& rhs);

35 friend MVector operator -(const MVector& lhs , const MVector& rhs);

36 friend MVector operator /(const MVector& lhs , const double& rhs);

37

38 friend ostream& operator <<(ostream& os, const MVector& v);

39

40 // get size

41 int size() const { return v.size(); } // number of elements

42

43 // vector norms

44 double LInfNorm () const;

45 double L2Norm () const;

46

47

48 private:

49 vector <double > v;

50 };

51

52 // dot product

53 double dot(const MVector& lhs , const MVector& rhs);

B Appendix - Extra Code

B.1 Octave verification of linear solver

octave:11> A

A =

2 -1 0 0 0

-1 2 -1 0 0

16

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 2

octave:12> b

b =

0.027778

0.027778

0.027778

0.027778

0.027778

octave:13> A\b

ans =

0.069444

0.111111

0.125000

0.111111

0.069444

C Appendix - Notes on the problems addressed

The code provided does not immediately provide all of the results stated. I have enclosed the code as
is due to time constraints. The current implementation writes a file which documents computation
time for any execution of conjugateGradientSolve(). It is stated in the body that our code
produces a file which consists of given results. The norm values are consistent, but the times will
change due to different hardware and system resources if executed. The code was modified when it
was needed to write the solutions to Poisson’s equation in 2D in matrix form.

There is confusion with the problem for Poisson’s equation in 2D. The problem states that we
are solving ∇2u = 1 and the formulation for this is analogous to the 1D problem given, however for
the 1D problem the model equation is u′(s) = −1. Our solutions for both are positive valued. If
we are solving the 2D equation our solution should be negative, but the matrix and vector in the
solution are verified to be correct as given by the problem statement. Furthermore, the solution
seems to only satisfy the boundary conditions on the horizontal boundary lines.

All code compiled successfully on Ubuntu 22.04 Linux with g++ using -O2 optimisation, faster
floating point arithmetic -ffast-math and native hardware priority -march=native.

17

