
Compressed Sensing

Will Woolfenden

March 3, 2024

1 Introduction

This report is concerned with iterative methods for solving systems of linear equations (SLEs),
focusing on singular systems which are either over or under-determined. We are interested in com-
pressive sensing, where we want to reconstruct a solution to an SLE given an insufficient amount
of information to solve with common iterative methods. To start, we look at an implementation
of the gradient descent method for solving the linear least squares problem for an overdetermined
system. We then focus on an implementation of normalised iterative hard thresholding, with a fo-
cus instead on recovering a sparse solution to an SLE. Compressed sensing arises in areas of signal
processing, such as image and audio compression. For example, we may have the goal of reducing
the information in an image as much as possible, such that we can reliably reconstruct the original
image.

This report covers the results produced using C++ implementations of steepest descent and
normalised iterative hard thresholding. All code implementations are provided in the Appendix.
The testing function has been commented into several sections in order to isolate bodies of tests.
These can be uncommented, compiled and executed by the reader for verification. All code was
compiled successfully on Ubuntu 22.04 using the g++ 11 compiler, with −O2 optimisation, native
hardware priority −march = native and accelerated floating point arithmetic −ffast− math.

2 Steepest Descent

2.1 Least Squares

We are interested in solving the least squares problem minx ||Ax − b||2. The solution is computed
by solving the normal equations ATAx = ATb. Our results compare different paths taken by the
steepest descent algorithm to solve the normal equations for a least squares problem. We first look
at minimising ||Ax− b||2 for

A =

 1 2
2 1
−1 0

 , b =

10
−1
0

 .

This system is over-determined, i.e. the number of constraints exceeds the number of variables xi.
We can analyse the least squares problem using the singular value decomposition A = UΣV T. It
can be shown that the first r columns of the SVD span the range of A. We can use this knowledge
to evaluate convergence of the least squares problem. Namely, we can only find a solution which
solves Ax = b when b belongs to range(A). Otherwise, there is no such x that will solve this system

1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

11

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

11

-5 -4 -3 -2 -1 0 1
0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

11

Paths of x towards a least squares minimiser (top) and the residuals (bottom)

Figure 1: Gradient Descent implementations. Left: matrix A = [1, 2; 2, 1;−1, 0]. Middle: matrix
A = [1, 2; 2, 1; 1.8,−2]. Right: matrix A = [1, 2; 2, 1;−2,−2]. Top row is plots of x for each step of
the Steepest Descent algorithm. Bottom row shows the L2-norm ||b − Ax||2. Stopping criterion is
for the residual L2-norm ri = ||AT(b−Axi)||2 to be below a given threshold.

of linear equations. If this solution does not exist, then we search for the solution which minimises
||Ax− b||2, which is the Euclidean distance from Ax to b. For a minimum L2-norm solution x∗, we
have that b− Ax∗ must be orthogonal to any vector in range(A). We can use this criterion to test
our solution.

2.2 Singular Value Decomposition Examples

Any matrix has an SVD A = UΣV T. If A is n×m then so is Σ, where U ∈ Rn×n and V ∈ Rm×m

are orthogonal matrices. The matrix Σ has the singular values σi on the diagonal in descending
order, which are the square roots of the eigenvalues of ATA. Some of the singular values may be
zero. We often write σ1 > σ2 > . . . > σr > σr+1 = σr+2 = . . . = 0. We use Octave for linear algebra
results. See below:

1 octave :22> A

2 A =

3 1 2

4 2 1

5 -1 0

6

7 octave :23> [U,Z,V] = svd(A)

8 U =

9 -0.6716 0.6911 -0.2673

10 -0.7000 -0.4735 0.5345

11 0.2428 0.5461 0.8018

12

13 Z =

14 Diagonal Matrix

2

15 3.0873 0

16 0 1.2120

17 0 0

18

19 V =

20 -0.7497 -0.6618

21 -0.6618 0.7497

The optimum solution obtained by our gradient descent method is x∗ ≈ (−2.57, 5.86)T. These
results correspond to section (2) in the main() function. We compute the vector b − Ax∗ and find
its inner products with the columns of U .

1 octave :27> x

2 x =

3 -2.5714

4 5.8571

5

6 octave :28> b

7 b =

8 10

9 -1

10 0

11

12 octave :29> (b-A*x)’*U

13 ans =

14 -4.8408e-15 1.7471e-15 -3.2071e+00

The inner products with the first two columns are extremely small - they are only non-zero since we
are working in finite precision arithmetic. See Appendix B for the inner products when looking at
other cases. In the second case, we change the last row of A to [1.8,−2] and in the final case it is
[−2,−2].

In every case, Ax is simply a linear combination of its two spanning vectors which we find from
the SVD. Therefore if b − Ax∗ is orthogonal to the first two columns of U then x∗ is a minimum
L2-norm solution. See Figure 1 for visualisations of the Gradient Descent method.

2.3 Method

Each step of the Gradient Descent/Steepest Descent iteration is the step

xi+1 = xi + αiri

where ri is the residual
ri := AT (b−Axi)

to the normal equations ATAx = ATb, and αi is the minimising step length

αi =
rTi ri

rTi A
TAri

.

We differentiate ||Ax − b||22, the squared distance, with respect to x to find that a minimum is
attained when x solves the normal equations.

∇||Ax− b||22 = ∇
(
(Ax− b)T(Ax− b)

)
= ∇

(
xTATAx+ bTb− xTATb− bTAx

)
= 2ATAx− 2ATb

3

Figure 2: Graph of the objective function f(x) = 1
2 ||Ax− b||22. Case 1, where A = [1, 2; 2, 1;−1, 0].

We have solved for the minimiser x∗ = [−2.57, 5.85]T, which is clearly in the vicinity of the minimiser
for this graph.

Clearly the solution to the normal equations is equivalent to when ∇||Ax − b||22 = 0. This implies
that our iterative method is of the form xi+1 = xi + αi (−∇f(xi)) where f(xi) is the L2-norm we
are trying to minimise.

See Figure 1 for the performance of the steepest descent implementation in three similar cases.
Cases 1 and 3 show a zig-zag path taken, where the residual only points in one of two directions.
For case 2, the residual takes the path of a straight line and converges rapidly.

In Figure 2, we have graphed the objective function which we are trying to minimise from one case
we have looked at. This convex function has a unique minimiser. The residual ri is the negative
gradient of this function at xi, which is the steepest descent direction local to that point. Each
iteration starts at a point xi and finds the appropriate descent direction. Consider the contours of
the convex function. In order for the step length to be minimising, we must send xi to xi+1 such
that ri is tangent to the level set at xi+1. Otherwise, further minimisation would be possible from
xi+1 in direction ri.

This requirement leads to the shapes of the paths taken in Figure 1, namely that the descent
direction alternates for each step. The second case lacks this appearance because the initial steepest
descent direction points directly towards the unique minimiser, thus no alternate directions are cho-
sen. However, it takes more than one iteration to converge, potentially due to machine imprecision.

3 Normalised Iterative Hard Thresholding

3.1 Motivation

Having looked at an introduction for iterative methods for solving systems of linear equations, we
now move on to the focus of this report, which is the implementation of the Normalised Iterative
Hard Thresholding algorithm (NIHT) for the purpose of compressed sensing. We look at the NIHT

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x
1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x
2

0.7 0.8 0.9 1 1.1 1.2 1.3

x
1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x
2

Algorithm iteration on x on a 3x2 system with sparsity parameter k=2

Figure 3: Map of x similar to earlier seen in Figure 1. We compare the steepest descent iteration
(left) with the NIHT iteration on k = 2 (right). A random 3 × 2 matrix A and a random vector
x∗ of length 2 are generated and we compute b = Ax∗. Both algorithms solve b = Ax. We observe
identical paths towards the optimiser in this example.

algorithm from [3]. Our NIHT algorithm implementation is one of several algorithms which are
popular for compressed sensing [2]. An example of a compressed sensing problem would be the
linear system Ax = b to represent the data from a signal. Here, b represents observations from the
signal, whereas the terms in x are the coefficients of a decomposition of the signal, such as a Fourier
transformation. We focus on the sparsity of the vector x, which we can exploit to effectively recover
the solution. We show that the algorithm will converge to the correct solution under particular
conditions. We consider how the likelihood of convergence depends on the properties of the system.

3.2 Solutions to SLEs

The setup for our problem is different to that of least squares. Previously, we were given A and b,
and had to minimise the function ||Ax− b||22. Now, we start with A and x and generate b. We are
then given the problem of recovering the solution x from only A and b. Depending on properties of
A and x, we may or may not recover the original vector.

Normalised iterative hard thresholding is an algorithm for finding a sparse solution to a system
of linear equations. The system is often underdetermined, where m < n. However we include a
sparsity parameter k. We say x is k-sparse if it has at most k entries which are non-zero. Then there
are m equations on k non-zero unknowns and the system may be fully determined. If m = 1, then
we have one equation on the k unknowns of x, which cannot be solved uniquely, whereas if m = n
then the problem can usually be solved. Recovery of x depends on both the information m and the
sparsity k.

Since we start with A and x to produce b = Ax, we can guarantee that the system has a solution
by its construction.

3.3 Method

Normalised iterative hard thresholding is a greedy algorithm, meaning that at any point in time it
will make the “best” decision based on only current information. This is apparent in the thresholding

5

Figure 4: Figure of the values generated in a 1000 × 1 random matrix. The values are clearly that
of a Gaussian distribution, with mean approximately 0 and variance approximately 1.

implementation, especially since the thresholding of a random vector is likely unique. Thresholding
the vector means we are losing information that we would otherwise consider in an algorithm such
as gradient descent.

In all our results, we consider matrices and vectors with random entries. We do this using an
initialise normal() method which used the C++ standard library rand() function and applies
the Box-Müller transform to generate values randomly from a Gaussian distribution. See Figure 4
for the distribution from a random matrix. A random vector takes entries directly from the Gaussian
distribution, but any random matrix takes entries η/

√
m, where η is the random variable from the

Gaussian distribution and m is the number of rows of the matrix. This is such that the entries in
a matrix have variance 1/m. It is useful to be able to construct random matrices so that we can
apply NIHT to different problems repeatedly. We generate an m × n matrix A and an n-vector x.
We threshold x by the sparsity parameter k and compute b = Ax. Starting with x0 = ATb, iterate:

xi+1 = Hk (xi + αiri)

where αi and ri are defined identically to how they were in the gradient descent method.
The iteration continues until ||r||2 is sufficiently small. Our method itself is a modification of

gradient descent applied to compressed sensing [2]. See Figure 3, which shows the behaviour of both
algorithms applied to the same problem. In this case, the paths are identical except for different
starting points. This verifies that NIHT performs gradient descent for this example, especially since
k = 2 is the size of x and so we consider no sparsity. It is important to note that we should not
expect similar iteration performances between the two algorithms when working with very sparse
and very full problems.

The function Hk(y) is the thresholding operation that sets all but the k greatest-in-modulus
entries in y to zero. Thresholding is performed at every stage of the iteration, essentially projecting
to a k-dimensional vector space. Our method threshold(k) copies the vector and sorts it by
absolute value using our abs cmp() comparison function fed to the standard C++ sort() function.
This standard library function has time complexity O(n log n) where n is the vector length [4]. In

6

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=20

k=50

Figure 5: Plots of the likelihood of convergence for sparsities k = 20 and k = 50 on a vector x of
length 200. The probability of convergence changes as a function of m. For k = 20, the algorithm is
likely to succeed for m > 120. For k = 50, success is likely for m > 180. Likelihood estimated from
50 samples for each combination of k and m.

our function, we then take the k-th largest entry from the sorted vector, then iterate through the
original vector and perform thresholding. Space complexity could be improved by avoiding copying
the vector, but the copy allows us to perform sorting on a separate vector, get the value we need,
and perform the threshold.

3.4 Testing and Results

The NIHT() function performs the iteration given A, b as well as a tolerance tol and integer
maxIterations. The function does also take x passed by reference, but it is non constant and
immediately changed to x0 = ATb as an initial guess. We give x as an argument for the solution to
be returned in, since the function returns the int number of iterations taken. The algorithm can
take a long time to converge for large systems, so we need to perform some convergence testing.
We have implemented a clause in the function for this. Before anything, we compute a relaxed
tolerance laxtol which is the square root of the tolerance. If tol is 10−6, convergence testing con-
siders the tolerance 10−3. Our testing statement checks that ||r||2 > laxtol, i.e. we are not close
to the required tolerance, and that |||xi−1||∞ − ||xi||∞| < tol, i.e. the iteration is improving by a
small amount at most. If these are satisfied then clearly the algorithm is stagnating, since we are
not within the desired tolerance but x is not changing enough after each iteration. The algorithm
returns zero, which we regard as failure.

The NIHT algorithm exhibits a phase transition in its likelihood to succeed depending on k and
m. A phase transition is where the behaviour of the algorithm changes abruptly as the parameters
change. See Figure 5, where we have plotted two results for different sparsities. For low values of
m, the algorithm initially fails. Once we reach a particular value, the probability of success grows

7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Contour graph of the likelihood of successful convergence as a function on both k and
m. For a fixed sparsity k, we are more likely to solve the system with more information m. If
we instead fix m, the algorithm appears more likely to succeed for smaller values of k. Sparsity
parameters tested are k = 5, 10, . . . , 100 and m = 4, 9, . . . , 199. The value of n is fixed at 200. For
each combination of k and m, we take 50 samples to estimate the likelihood of success.

8

20 40 60 80 100

20

40

60

80

100

120

140

160

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Line fitting to approximate the phase transition region. Replicate of Figure 6 with weaker
contour information, and without scaling from dividing by n = 200. The line marked in green is
y = O(

√
k) a constant scaling of

√
k. Clearly, this curve is a close fit to the region in which the

phase transition occurs.

9

rapidly to near certainty. Given k fixed, if the algorithm is likely to succeed for some m = m0 then
it is also likely to succeed for all m > m0.

The likelihood of success is computed using the stability() function. Stability performs T
executions of NIHT, each time formulating a new system, and then outputs the proportion of those
executions which solved the problem successfully. Success is evaluated under two criteria, one of
which is that the NIHT claims completion in > 0 iterations, since the algorithm returns zero if the
solution fails. The other criterion is that the L∞-norms of the original x and the newly computed
solution must vary by less than 10−3. Importantly, this does not check equality of the vectors. It
only checks that the largest values by magnitude differ by a small amount. We implement this check
because even if the algorithm succeeds, the new x may have entries that are only close to the original,
by a distance relating to the tolerance given to the NIHT() implementation. We may be concerned
that this logic could lead to improper registration of success. However, since we are working with
randomised systems, the likelihood of an incorrect solution having an L∞-norm virtually equal to
the correct solution is extremely unlikely.

Figure 5 indicates how the number of rows affects the algorithm. For k = 20, we are working
with a sparsity ratio of 0.1. The requirement for success is visibly m > 120. If we increase k to 50,
we have sparsity ratio 0.25. We now require m > 180, which is closer to a full system.

See Figure 6, where we have constructed a contour graphic of the phase transition behaviour.
Our domain is k = 5 : 5 : 100 and m = 4 : 5 : 199 in MATLAB notation. For every combination, the
probability is sampled from 50 tests. This was chosen such that the entire result could be computed
within a reasonable amount of time. The sparsity ratio is measured up to k/n = 0.5, since beyond
this value we will clearly only observe failure. Likewise, the system information parameter m/n
is only measured up to 199/200, since we are only testing NIHT for underdetermined systems. It
is important to note that the results have a lot of noise. The region of failure is in blue and the
region of success is yellow. The transition region between these disjoint subsets of the parameter
space is a thin region of steep gradient. In Figure 7 we have found that, from our data, a line of
the form m = α

√
k for scalar α approximates the curve defined by the phase transition region. The

method for finding this relationship is based on results from [1], mainly being Theorem 2 on phase
transitions for linear inverse problems. These results do not apply directly to the NIHT algorithm
since it does not belong to the same class of methods.

Our key result from our computations is that NIHT is often successful for a system with high
sparsity. If the sparsity parameter k is low, we can still find the k-sparse solution x to the system
even when m < n such that the system is underdetermined. Intuitively this makes sense, since we
are only considering k non-zero unknowns in x. As k increases, we must increase m such that the
algorithm has more information. If the problem is dense, it can be that NIHT fails to solve the
system even if it is fully determined. For these denser problems, we would probably be more suited
to implementing an algorithm like gradient descent, although we do not maintain the results we
have for NIHT concerned with solving an underdetermined system correctly.

4 Conclusion

The normalised iterative hard thresholding algorithm is an effective method for finding a sparse
solution of a linear system. We have shown how the behaviour of NIHT varies depending on a
combination of the parameters of the linear system. Specifically, we have explored the properties
of the phase transition. We have acknowledged that the phase transition for this method is not
properly understood, but we have linked it to current results on phase transitions for optimisation
methods.

10

We have considered the relationship between applying NIHT to find a sparse solution, and using
gradient descent to solve the least squares problem. Despite being extremely similar in terms of the
instructions performed, both algorithms are well suited for very different problems. The traditional
least squares problem is overdetermined, and we apply gradient descent to find a solution which
satisfies none of the constraints but minimises a squared distance. In comparison, we have found
that the NIHT method is most effective for underdetermined sparse problems and will often fail
to solve fully determined systems. Out of the scope of this project is the implementation of more
effective numerical methods. The gradient descent method is helpful to understand, but is often
avoided in favour of a more effective algorithm such as conjugate gradient. Compressed sensing
methods that use alternative methods are explored in [2].

In the context of compressed sensing, we have explored the potential of NIHT to recover sparse
solutions to linear systems. These systems often describe observations of signals for which we want
to recover the entirety of the original information. Our priority is to reduce the stored information
as much as possible, such that we can implement an algorithm to recover the signal entirely, and
we do not consider any restrictions on the cost of the recovery algorithm we implement. We have
shown that NIHT is an effective method for compressed sensing applications when the sparsity ratio
is relatively low, in that it will correctly solve the underdetermined system for the original sparse
vector used in formulating the problem. As the sparsity parameter increases, we are increasing
the stored information and our problem becomes less about compression and more about solving a
general linear system. As such, we have discussed how NIHT is less suited towards these problems,
and that a method such as steepest descent is more appropriate. However we must always be
aware that steepest descent has no guarantee on finding the desired solution when the problem is
underdetermined. Our argument is that NIHT appears to be effective if and only if it is applied as
a method in compressed sensing.

References

[1] Dennis Amelunxen et al. “Living on the edge: Phase transitions in convex programs with random
data”. In: Information and Inference: A Journal of the IMA 3 (2014), pp. 224–294.

[2] Jeffrey D Blanchard and Jared Tanner. “GPU accelerated greedy algorithms for compressed
sensing”. In: Mathematical Programming Computation 5 (2013), pp. 267–304.

[3] Thomas Blumensath and Mike E Davies. “Normalized iterative hard thresholding: Guaranteed
stability and performance”. In: IEEE Journal of selected topics in signal processing 4 (2010),
pp. 298–309.

[4] std::sort, cppreference.com.

A C++ Code Implementations

A.1 Compiled Files

main.cpp

1 #include <iostream >

2 #include <fstream >

3 #include <thread >

4

5 #include "mvector.h"

6 #include "mmatrix.h"

11

7

8 using namespace std;

9

10 // non -class functions

11 int SDLS(const MMatrix& A, const MVector& b, MVector& x, int maxIterations , double

tol , bool writesFile = false , string filename = "")

12 {

13 // r is the residual for solving the normal equations

14 MVector r = A.transpose () * (b - A*x);

15

16 // block for writing data. f must be created but if !writesFile we write nothing

17 ofstream f;

18 if (writesFile && filename != "")

19 {

20 f.open(filename);

21 if (!f)

22 {

23 exception e;

24 throw e;

25 }

26 f << "Steepest Descent Algorithm implementation" << "\n";

27 f << "A = " << "\n" << A << "\n";

28 f << "b = " << b << "\n";

29 f << "Iterations for x:\n";

30 f << x << "\n";

31 }

32

33 int iter = 0;

34 while (iter < maxIterations && r.L2Norm () > tol)

35 {

36 // perform the iteration

37 double alpha = (dot(r, r))/(dot(A*r, A*r));

38 x = x + alpha * r;

39 r = r - alpha *(A.transpose ()*(A*r));

40

41 if (writesFile && filename != "")

42 {

43 f << x << "\n";

44 }

45

46 iter ++;

47 }

48 if (writesFile && filename != "")

49 {

50 f.close();

51 }

52

53 if (r.L2Norm () > tol)

54 {

55 // iteration fails to converge to a solution

56 return 0;

57 }

58

59 return iter;

60 }

61

62 int NIHT(const MMatrix& A, const MVector& b, MVector&x, int k, const int&

maxIterations , const double& tol , const bool& writesFile = false , string filename

= "")

63 {

12

64 // compute vector norms and sqrt(tol) for convergence checking

65 double x_infnorm = x.LInfNorm (), x_2norm = x.L2Norm ();

66 double laxtol = sqrt(tol);

67

68 // Initialise starting vector

69 x = A.transpose ()*b;

70 x.threshold(k); // Get k largest values

71 MVector r = A.transpose () * (b - A*x);

72

73 // block for writing data

74 ofstream f;

75 if (writesFile && filename != "")

76 {

77 f.open(filename);

78 if (!f)

79 {

80 exception e;

81 throw e;

82 }

83 f << "Normalised Iterative Hard Thresholding Algorithm implementation" << "\n

";

84 f << "A is a random " << A.Rows() << " by " << A.Cols() << " matrix .\n";

85 f << "x is a random " << x.size() << "-vector with sparsity " << k << ".\n";

86 f << "Norm of the residual :\n";

87 f << r.L2Norm () << "\n";

88

89 // f << "Iterations for x:\n";

90 // f << x << "\n";

91 }

92

93 // begin iteration

94 int iter = 0;

95 while (iter < maxIterations && r.L2Norm () > tol)

96 {

97 double alpha = (dot(r, r))/(dot(A*r, A*r));

98 // compute and threshold x

99 MVector xPrev = x;

100 x = x + alpha*r;

101 x.threshold(k);

102

103 // cout << x << "\n";

104

105 // compute residual

106 r = A.transpose () * (b - A*x);

107

108 // do some convergence testing

109 if (abs(xPrev.LInfNorm () - x.LInfNorm ()) < tol && r.L2Norm () > laxtol)

110 {

111 return 0;

112 }

113

114 if (writesFile && filename != "")

115 {

116 f << r.L2Norm () << "\n";

117 // f << x << "\n";

118 }

119 iter ++;

120 }

121

122 if (writesFile && filename != "")

13

123 {

124 f.close();

125 }

126 if (r.L2Norm () > tol)

127 {

128 // iteration has failed to converge

129 return 0;

130 }

131 return iter;

132

133 }

134

135 double stability(int m, int n, int k, int T)

136 {

137 /*

138 Stability returns the probability p(m) of successful recovery of NIHT given

dimensions , sparsity , and the number of times T to perform NIHT.

139 */

140 double successes = 0;

141 for (int i = 0; i < T; i++)

142 {

143 // make a k-sparse vector x, make A, form b=Ax

144 MVector x(n);

145 x.initialize_normal(k);

146 MMatrix A(m, n);

147 A.initialize_normal ();

148 MVector b = A*x;

149

150 double x_linfnorm_orig = x.LInfNorm ();

151

152 int iterations = NIHT(A, b, x, k, 100000 , 1e-6);

153 if (abs(x.LInfNorm ()-x_linfnorm_orig) < 1e-3 && iterations > 0)

154 {

155 successes ++;

156 }

157 }

158 return successes/double(T);

159 }

160

161 int main()

162 {

163 srand(time(NULL));

164

165 // (1) generating a matrix and testing that transpose () works

166 MMatrix A(2, 3);

167 A(0, 0) = 1;

168 A(1, 1) = 2;

169 A(2, 0) = 1;

170

171 cout << A << endl;

172 A.transpose ();

173 cout << A << endl;

174

175 // (2) least squares convergence

176 MMatrix A(3, 2);

177 A(0, 0) = 1;

178 A(1, 0) = 2;

179 A(2, 0) = -1;

180 A(0, 1) = 2;

181 A(1, 1) = 1;

14

182 A(2, 1) = 0;

183

184 MVector b = {10, -1, 0};

185

186 MVector x = {0, 0};

187 cout << A << endl;

188 int n = SDLS(A, b, x, 1000, 1e-6, true , "sdsolveA1.txt");

189

190 A(2, 0) = 1.8;

191 A(2, 1) = -2;

192 x = {0, 0};

193 n = SDLS(A, b, x, 1000, 1e-6, true , "sdsolveA2.txt");

194

195 A(2, 0) = -2;

196 A(2, 1) = -2;

197 x = {0, 0};

198 n = SDLS(A, b, x, 1000, 1e-6, true , "sdsolveA3.txt");

199 cout << n << ", " << x << ", " << A*x << endl;

200

201 // (3) For generating a histogram of the entries for a 1000x1 random matrix

202 MMatrix N(1000, 1);

203 N.initialize_normal ();

204

205 ofstream f;

206 f.open("normaldisttest.txt");

207 if (!f)

208 {

209 exception e;

210 throw e;

211 }

212 f << N << endl;

213 f.close();

214

215 // (4) perform normalised iterative hard thresholding for a single example

216 double eqnratio , sparsity;

217 eqnratio = 0.9, sparsity = 0.25;

218 int n = 20;

219 int m = eqnratio * n;

220 int k = sparsity * n;

221 MMatrix A(m, n);

222 MVector b(m);

223 MVector x(n);

224

225 A.initialize_normal ();

226 x.initialize_normal(k);

227

228 b = A*x;

229

230 cout << A << endl;

231 cout << x << endl;

232 cout << b << endl;

233

234 int iterations = NIHT(A, b, x, k, 100000 , 1e-6);

235 cout << "iteration NIHT performed in " << iterations << " steps\n";

236 cout << x << endl;

237

238 // (5) compute the phase transition

239 int n = 200, k = 20, T = 50;

240

241 for (int m = 4; m <= 199; m += 5)

15

242 {

243 double p = stability(m, n, k, T);

244 cout << "For m = " << m << ", n = " << n

245 << ", the probability of recovery for sparsity " << k << " is " << p << endl;

246 }

247

248 // (6) testing

249 cout << stability (60, 50, 10, 50) << "\n";

250 cout << stability (120, 100, 20, 50) << "\n";

251 cout << stability (240, 200, 40, 50) << "\n";

252

253 MMatrix A(3,2);

254 int k = 2;

255 A.initialize_normal ();

256 MVector xstar (2);

257 xstar.initialize_normal (2);

258 MVector xiter (2), yiter (2);

259

260 cout << SDLS(A, A*xstar , xiter , 1000, 1e-4, true , "randomsdlstest.txt") << endl;

261 cout << NIHT(A, A*xstar , yiter , k, 1000, 1e-4, true , "randomnihttest.txt") <<

endl;

262

263 // (7) 2d figure generator

264 /*

265 compute the figure as a matrix.

266 n = 200,

267 m ranging 4:5:199 is 5*(1:1:40) -1

268 k ranging 5:5:100 is 5*(1:1:20)

269 */

270

271 ofstream f;

272 string filename = "placeholder.txt";

273 f.open(filename);

274

275 // generate a results matrix with all the values and output this to a file.

276 // generate a file for each value of m with the results

277

278 int n = 200;

279 int T = 50;

280 int rows = 40, cols = 20;

281 for (int m = 1; m <= rows; m++)

282 {

283 int M = 5 * m - 1;

284 for (int k = 1; k <= cols; k++)

285 {

286 int K = 5*k;

287 double p = stability(M, n, K, T);

288

289 cout << "For m = " << M << ", n = " << n

290 << ", the probability of recovery for sparsity " << K << " is " << p <<

endl;

291

292 // index A by row m, column k

293 f << "A(" << M << ", " << K << ") = " << p << "\n";

294

295 }

296 }

297 f.close();

298

299 return 0;

16

300 }

mmatrix.cpp

1 #include <vector >

2 #include <iostream >

3 #include <iomanip >

4 #include <ios >

5 #include <algorithm >

6 #include <cmath >

7 #include <cassert >

8

9 #include "mmatrix.h"

10 #include "mvector.h"

11

12 using namespace std;

13

14 MVector operator *(const MMatrix& A, const MVector& v)

15 {

16 // check compatibility

17 if (A.Cols() != v.size())

18 {

19 cout << "wrong dims" << endl;

20 exception e;

21 throw e;

22 }

23 // initialise output vector

24 int vout_size = A.Rows();

25 MVector vout = MVector(vout_size);

26

27 for (int i = 0; i < A.Rows(); i++)

28 {

29 // sum across j

30 double sum = 0;

31 for (int j = 0; j < A.Cols(); j++)

32 {

33 sum += A(i, j)*v[j];

34 }

35 vout[i] = sum;

36 }

37 return vout;

38 }

39

40 MMatrix operator *(const MMatrix& A, const MMatrix& B)

41 {

42 // compatibility check

43 assert(A.nCols == B.nRows);

44

45 // construct the return matrix of correct size

46 MMatrix C(A.nRows , B.nCols);

47

48 // compute all C(i, j)

49 for (int i = 0; i < C.nRows; i++)

50 {

51 for (int j = 0; j < C.nCols; j++)

52 {

53 double sum = 0;

54 for (int k = 0; k < A.nCols; k++)

55 {

56 sum += A(i, k)*B(k, j);

57 }

17

58 C(i, j) = sum;

59 }

60 }

61 return C;

62 }

63

64 MMatrix MMatrix :: transpose () const

65 {

66 MMatrix C(nCols , nRows);

67 for (int i = 0; i < nRows; i++)

68 {

69 for (int j = 0; j < nCols; j++)

70 {

71 // hacky. i and j are rows and colums respectively of A, opposite for C

72 C(j, i) = A[j + i*nCols];

73 }

74 }

75 return C;

76 }

77

78 void MMatrix :: initialize_normal ()

79 {

80 for (vector <double >:: iterator term = A.begin (); term != A.end(); term ++)

81 {

82 // set every entry to output of a zero mean , variance 1/m gaussian

83 *term = rand_normal ()/sqrt(nCols);

84 }

85

86 }

87

88 ostream& operator <<(ostream& os, const MMatrix& A)

89 {

90 for (int i = 0; i < A.Rows(); i++)

91 {

92 os << "| ";

93 for (int j = 0; j < A.Cols(); j++)

94 {

95 os << setw (3) << A(i, j) << " ";

96 }

97 os << "|\n";

98 }

99 return os;

100 }

mvector.cpp

1 #include <vector >

2 #include <iostream >

3 #include <iomanip >

4 #include <algorithm >

5 #include <cmath >

6 #include <iterator >

7 #include <cassert >

8 #include <ctime >

9

10 #include "mvector.h"

11

12 using namespace std;

13

14 // constructors in header

15

18

16 MVector operator *(const double& lhs , const MVector& rhs)

17 {

18 MVector temp = rhs;

19 for (int i = 0; i < temp.size(); i++)

20 {

21 temp[i] *= lhs;

22 }

23 return temp;

24 }

25

26 MVector operator *(const MVector& lhs , const double& rhs)

27 {

28 return rhs*lhs;

29 }

30

31 MVector operator +(const MVector& lhs , const MVector& rhs)

32 {

33 if (lhs.size() != rhs.size())

34 {

35 exception e;

36 throw e;

37 }

38 MVector temp(lhs.size());

39 for (int i = 0; i < temp.size(); i++)

40 {

41 temp[i] = lhs[i] + rhs[i];

42 }

43 return temp;

44 }

45

46 MVector operator -(const MVector& lhs , const MVector& rhs)

47 {

48 return lhs+(-1*rhs);

49 }

50

51 // alternative overload such that given MVector v, -v is allowed

52 MVector MVector ::operator -()

53 {

54 MVector vec(v.size());

55 for (int i = 0; i < vec.size(); i++)

56 {

57 vec[i] = -v[i];

58 }

59 return vec;

60 }

61

62 MVector operator /(const MVector& lhs , const double& rhs)

63 {

64 return (1/rhs)*lhs;

65 }

66

67 bool operator ==(const MVector& lhs , const MVector& rhs)

68 {

69 assert(lhs.size() == rhs.size());

70 for (int i = 0; i < lhs.size(); i++)

71 {

72 if (lhs[i] != rhs[i])

73 {

74 return false;

75 }

19

76 }

77 return true;

78

79 }

80

81 ostream& operator <<(ostream& os, const MVector& v)

82 {

83 int n = v.size();

84 os << "(";

85 for (int i = 0; i < n-1; i++)

86 {

87 os << setw (10) << v[i] << ", ";

88 }

89 os << v[n-1];

90 os << ")";

91 return os;

92 }

93

94 double MVector :: LInfNorm () const

95 {

96 double maxAbs = 0;

97 size_t s = size();

98 for (int i=0; i<s; i++)

99 {

100 maxAbs = max(abs(v[i]), maxAbs);

101 }

102 return maxAbs;

103 }

104

105 double MVector :: L2Norm () const

106 {

107 double sum = 0;

108 for (int i = 0; i < v.size(); i++)

109 {

110 sum += v[i]*v[i];

111 }

112 return sqrt(sum);

113 }

114

115 double dot(const MVector& lhs , const MVector& rhs)

116 {

117 if (lhs.size() != rhs.size())

118 {

119 throw invalid_argument("error: dot product not defined for vectors of non -

equal dimension");

120 }

121 double sum = 0;

122 for (int i = 0; i < lhs.size(); i++)

123 {

124 sum += lhs[i]*rhs[i];

125 }

126 return sum;

127 }

128

129 bool abscmp(const double& a, const double& b)

130 {

131 return abs(a) < abs(b);

132 }

133

134 void MVector :: threshold(int k)

20

135 {

136 vector <double > v_copy = v;

137 // sort a copy by absolute value , then identify the k-th largest value

138 sort(v_copy.begin(), v_copy.end(), abscmp);

139 // this picks out the k-th largest value

140 double bound = v_copy[v_copy.size() - k];

141

142 // iterate through the MVector contents performing the thresholding

143 for (vector <double >:: iterator term = v.begin (); term != v.end(); term ++)

144 {

145 if (abscmp (*term , bound))

146 {

147 *term = 0;

148 }

149 }

150 }

151

152 void MVector :: initialize_normal(int k)

153 {

154 for (vector <double >:: iterator term = v.begin (); term != v.end(); term ++)

155 {

156 *term = rand_normal ();

157 }

158

159 // complete copy of threshold

160 vector <double > v_copy = v;

161 sort(v_copy.begin(), v_copy.end(), abscmp);

162 double bound = v_copy[v_copy.size() - k];

163 for (vector <double >:: iterator term = v.begin (); term != v.end(); term ++)

164 {

165 if (abscmp (*term , bound))

166 {

167 *term = 0;

168 }

169 }

170 }

171

172 double rand_normal ()

173 {

174 static const double pi = 3.141592653589793238;

175 double u = 0;

176 while (u == 0) // loop to ensure u nonzero , for log

177 {

178 u = rand() / static_cast <double >(RAND_MAX);

179 }

180 double v = rand() / static_cast <double >(RAND_MAX);

181 return sqrt (-2.0* log(u))*cos (2.0*pi*v);

182 }

A.2 Header Files

mmatrix.h

1 #ifndef MMATRIX_H // the ’include guard ’

2 #define MMATRIX_H

3

4 #include <vector >

5 #include <iostream >

6 #include "mvector.h"

21

7

8 using namespace std;

9

10 // Class that represents a mathematical matrix

11 class MMatrix

12 {

13 public:

14 // constructors

15 MMatrix () : nRows (0), nCols (0) {}

16 MMatrix(int n, int m, double x = 0) : nRows(n), nCols(m), A(n * m, x) {}

17

18 // set all matrix entries equal to a double

19 MMatrix &operator =(double x)

20 {

21 for (unsigned i = 0; i < nRows * nCols; i++) A[i] = x;

22 return *this;

23 }

24

25 // access element , indexed by (row , column) [rvalue]

26 double operator ()(int i, int j) const

27 {

28 return A[j + i * nCols];

29 }

30

31 // access element , indexed by (row , column) [lvalue]

32 double &operator ()(int i, int j)

33 {

34 return A[j + i * nCols];

35 }

36

37 friend MVector operator *(const MMatrix& A, const MVector& v);

38 friend MMatrix operator *(const MMatrix& A, const MMatrix& B);

39 MMatrix transpose () const;

40

41 void initialize_normal ();

42

43 friend ostream& operator <<(ostream& os, const MMatrix& A);

44

45 // size of matrix

46 int Rows() const { return nRows; }

47 int Cols() const { return nCols; }

48

49 private:

50 unsigned int nRows , nCols;

51 vector <double > A;

52 };

53

54

55 #endif

mvector.h

1 #ifndef MVECTOR_H // the ’include guard ’

2 #define MVECTOR_H // see C++ Primer Sec. 2.9.2

3

4 #include <vector >

5 #include <cstdlib >

6 #include <cmath >

7 #include <iostream >

8

9 using namespace std;

22

10

11 // Class that represents a mathematical vector

12 class MVector

13 {

14 public:

15 // constructors

16 MVector () {}

17 MVector(int n) : v(n) {}

18 MVector(int n, double x) : v(n, x) {}

19 MVector(initializer_list <double > l) : v(l) {}

20

21 // access element (lvalue) (see example sheet 5, q5.6)

22 double &operator [](int index)

23 {

24 return v[index];

25 }

26

27 // access element (rvalue) (see example sheet 5, q5.7)

28 double operator [](int index) const {

29 return v[index];

30 }

31

32 // operator overloads

33 MVector operator -();

34

35 friend MVector operator *(const double& lhs , const MVector& rhs);

36 friend MVector operator *(const MVector& lhs , const double& rhs);

37 friend MVector operator +(const MVector& lhs , const MVector& rhs);

38 friend MVector operator -(const MVector& lhs , const MVector& rhs);

39 friend MVector operator /(const MVector& lhs , const double& rhs);

40 friend bool operator ==(const MVector& lhs , const MVector& rhs);

41

42 friend ostream& operator <<(ostream& os, const MVector& v);

43

44 // get size

45 int size() const { return v.size(); } // number of elements

46

47 // vector norms

48 double LInfNorm () const;

49 double L2Norm () const;

50

51 // threshold

52 void threshold(int);

53 void initialize_normal(int);

54

55

56 private:

57 vector <double > v;

58 };

59

60 // dot product

61 double dot(const MVector& lhs , const MVector& rhs);

62

63 // comparison for sorting

64 bool abscmp(const double&, const double &);

65

66 double rand_normal ();

67

68

69

23

70

71 #endif

B Octave Results for Steepest Descent

Replacing the third row of A with [1.8,−2].

1 octave :30> A(3,:) = [1.8, -2]

2 A =

3 1.0000 2.0000

4 2.0000 1.0000

5 1.8000 -2.0000

6

7 octave :31> [U,Z,V] = svd(A)

8 U =

9 0.737098 0.045736 0.674236

10 0.563941 0.508121 -0.650987

11 -0.372367 0.860070 0.348743

12

13 Z =

14 Diagonal Matrix

15 3.0285 0

16 0 2.8405

17 0 0

18

19 V =

20 0.3945 0.9189

21 0.9189 -0.3945

22

23 octave :35> x = [0.87027 , 2.07243] ’

24 x =

25 0.8703

26 2.0724

27

28 octave :36> (b-A*x)’*U

29 ans =

30 7.0920e-06 -2.0202e-06 7.3933e+00

Replacing the third row of A with [−2,−2]

1 octave :37> A(3,:) = [-2, -2]

2 A =

3 1 2

4 2 1

5 -2 -2

6

7 octave :38> x = [-4.70588 , 6.29412]

8 x =

9 -4.7059 6.2941

10

11 octave :39> x = [-4.70588 , 6.29412] ’

12 x =

13 -4.7059

14 6.2941

15

16 octave :40> [U,Z,V] = svd(A)

17 U =

18 -5.1450e-01 7.0711e-01 4.8507e-01

19 -5.1450e-01 -7.0711e-01 4.8507e-01

24

20 6.8599e-01 -1.8397e-16 7.2761e-01

21

22 Z =

23 Diagonal Matrix

24 4.1231 0

25 0 1.0000

26 0 0

27

28 V =

29 -0.7071 -0.7071

30 -0.7071 0.7071

31

32 octave :41> (b-A*x)’*U

33 ans =

34 1.3720e-05 -7.4695e-16 4.3656e+00

25

