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Abstract

Geometric methods for integrating dynamical systems aim to preserve behaviour from the system in
the numerical solution. General-purpose integration schemes are introduced in order to understand
the behaviour of numerical solutions to ODEs and build the foundation for geometric integration.
Symplectic integrators develop from the structure of Hamiltonian systems. These methods are
generally implicit but can be explicit if the Hamiltonian is separable. Examples show the utility
of symplectic methods in physical scientific applications. Backward error analysis shows that the
symplectic method exactly solves a problem whose modified Hamiltonian has closeness to the original
depending on the order of the method used. Positivity preserving methods in our analysis are
formulated for problems involving a graph-Laplacian matrix. Methods which are of current interest
are second order, which is shown, and employ the matrix exponential. Two adjustments to a
positivity preserving method are proposed, where if an approximation of the matrix exponential will
unconditionally preserve positivity then it can be employed in order to reduce cost.
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Chapter 1

Introduction

1.1 Motivation

The aim of this project is to discuss and analyse methods for the preservation of qualitative be-
haviour when solving ordinary differential equations (ODEs) numerically. We wish to provide the
reader with an understanding of how numerical methods can be formulated with the goal of qualita-
tive preservation, which involves exploring the formulation and modification of problems themselves
in order to be solved in these ways. As we will find, methods relevant to our interests are explored
and derived using fundamentally different approaches to the design of conventional methods. The
term “geometric” refers to an inherent quality of some system. For example, we might have a math-
ematical model describing the motion of some object over the surface of a sphere. The “geometric”
property of this model is that its solutions must describe a point on this surface. The term “numer-
ical integration” refers to numerical methods which are used to approximate solutions of, for our
purposes, ordinary differential equations.

We will discuss properties of numerical methods and how the motivation for geometric numer-
ical integration arises. The popular numerical integration schemes that we will explore provide a
numerical approximation to the solution of an ODE, by knowing the definition of the problem in
its most general form. The classical methods are general, and will provide a numerical solution to
any defined problem, however these methods are not designed for preservation of anything beyond
the definition of the derivative itself. This is not to say these methods need improving in any way,
as their formulation is arguably the correct approach for developing a general purpose numerical
integration scheme for solving ODEs. If we have some general problem and no notion of its invariant
properties, we can use a classical scheme to solve it numerically. If we have a different problem, and
some definite qualities that we wish to preserve, we can use these same classical methods to obtain
a numerical solution. However this is an approximation and has no guarantee of actually preserv-
ing our properties of interest. The alternative would be to propose an integrator specifically with
qualitative preservation in mind. If we then wanted to solve another problem without any notion
of geometric preservation, then we need a general “classical” method anyway. We will develop an
understanding of these methods themselves and their properties before our discussion on geometric
numerical integration. For reference, when speaking of “classical” integration schemes, we mean
methods such as Euler or the popular multi-stage Runge-Kutta methods we see in MATLAB.

One interesting facet of geometric numerical integration is that in general, we cannot simply
modify a popular method in order to preserve geometric qualities. Rather, we must define a method
which requires information on that quality itself. For example, the positivity preserving methods we
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will study later require the formulation of problem as an equation which we know preserves positivity
itself. The key here is that not only must the method be specially designed for geometric preservation,
but the problem itself must be expressed in this less general form, which itself analytically admits
preservation of this same quality. This is what allows these geometric integration schemes to preserve
these quantities, which is our goal, as well as actually integrating the system in the same fashion as
classical methods.

This is not to say that popular classical integrators do not preserve qualitative behaviour, but the
distinction is that they do not do so unconditionally. This problem mostly arises in long timespan
integrations. When solving a problem using a popular integrator, it is possible to accrue enough
error such that the behaviour of the system changes. Our goal is to investigate specialised numer-
ical integration schemes which preserve quality, regardless of all the other parameters given to the
method.

Geometric numerical integration methods can be summarised as more specialised integrators for
more specialised problems. This report explores two facets of geometric numerical integration. The
first is symplectic integration, where the flow map defined by a method must preserve area, or the
n-dimensional equivalent of “area”, when acting on any region in the phase plane. The second is
positivity, where all the variables of interest are inherently positive quantities.

1.2 An Introduction to Numerical Methods

To start, we will give a brief discussion of explicit numerical methods. A system of ordinary dif-
ferential equations often arises when constructing a mathematical model to describe some sort of
system: a set of variables and a description of how they change in time. In absolute most general
form, a system of ODEs has the appearance

dx

dt
= f(t, x) (1.1)

where the left-hand side expresses a change of x in time, while the right-hand side is some arbitrary
function on t and x. This is a first-order ODE, but in generality we can use this form to express
ODEs of any order by considering the solution to be a vector of variables. Consider the example
second order problem

d2x

dt2
= etx.

In this case, let us write this equation in terms of a vector x of derivatives:

x :=

(
x
ẋ

)
.

For compactness, we use the dot notation as a shorthand for a time derivative. We can write our
problem as

d

dt

(
x
ẋ

)
=

(
ẋ
etx

)
which can be expressed in general as

dx

dt
= F (t,x)

where F is an arbitrary function again, by no means linear in x. This framework is fundamental to
the methods we will look into for solving ODEs, hence we introduce it now. The problems we will
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look at will involve vector solutions in general, so our notation will usually instead denote the whole
vector quantity of interest as x, and make sure to individually distinguish its elements if needed.

Since there is a mixed tx term, this is a nonlinear equation. This means that we cannot write a
solution x(t) in closed form using analytical methods. Instead, we need to use a numerical method.
A numerical method provides us with a sequence of values (xi)

n
i=1 for given points in time (ti)

n
i=1,

where each xi is an approximation to the true solution xi ≈ x(ti). This is the “numerical integration”
of this project. Numerical methods, especially the ones we will look at, are aimed at solving Initial
Value Problems (IVPs), where we want to solve the ODE given an initial condition x(t = 0) = x0.
Alternatively, a boundary value problem specifies conditions on the boundary of a domain. For
example, consider a second order ODE1 with constraints at x(t = 0) and x(t = tn). Numerical
methods for boundary value problems are fundamentally different to the methods for initial value
problems we will study, hence we will not consider them in this report.

For a first example, we will consider Euler’s method. This method starts by assuming a value
x(tn) = xn and considering the next value. We denote the step size by h, being the difference
tn+1 − tn. Then we consider the next value by evaluating the Taylor series

x(tn + h) = x(tn) + hẋ(tn) +
h2

2
ẍ(tn) +

h3

6

...
x (tn) + . . . =

∞∑
k=0

hkx(k)(tn)

k!
.

On the left-hand side, the next point in time tn+1 is the same as tn + h. On the right-hand side, if
we assume h is small then we can simplify this problem by assuming that every term of h of order
2 or greater is negligibly small. We write this as O(h2). The big-O notation means that as h → 0,
the expression is bounded above by some constant times h2. The whole equation reduces to

x(ti+1) = xi + hf(ti, xi) +O(h2).

We know what f is, since it defines the ODE. We also assumed a value xi for a value (or approxi-
mation) of x(ti). If we ignore the O(h2) term, we are left with what is generally referred to as the
forward Euler method

xi+1 = xi + hf(ti, xi) (1.2)

for solving an ODE. This is an example of an explicit method, coming from how the next term is
obtained using only information which is immediately available.

One element that we will focus on is the concept of error and accuracy of a numerical method.
Euler’s method is first-order accurate, meaning that the expressions for the true solution (by Taylor
series) and the approximation (by the method) are the same up to and including the term in h
of order 1. Here we define the concept of truncation error as τ(h) = x(ti) − xi, being the error
between the true solution and the approximation for a single step of size h. As we have seen, the
local truncation error of Euler’s method is O(h2). We also want to consider the concept of global
truncation error, which is the error accumulated over an entire numerical solution. This is important
because each step comes from a previous point, and only the initial value is given as exact. The local
error of Euler’s method is O(h2), and assume it requires N timesteps in order to compute a numerical
solution. Then the global error is O(Nh2). But N is proportional to 1/h since h = (tn− t0)/N , and
so the global error is O(h). This argument can be generalised to any method with uniform timestep,
but also applies to the error of a general, variable time-step method [14]

The problem of global error analysis arises when considering how we may need a computation
to match a certain tolerance. Assume we need the global error of a numerical solution to be below
ϵ. This means we need the sum of the truncation errors across the whole computation to be below

1A problem of order n requires n conditions in order to have a unique solution.
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this threshold. Ignore how we compute or estimate the truncation error, which we will explore later.
Assume we perform a computation and our global error is less than or equal to 8ϵ. We need to
divide the global error by 8. For a method with global truncation error O(h3), we can half the step
size and run the computation again to match this tolerance, since if Ch3 ≈ 8ϵ then C(h/2)3 ≈ ϵ.
Whereas for a lower order method, this would be much more expensive, perhaps prohibitively more
so.

Despite Euler’s method being only first order, it is still a convergent method.

Definition 1.1. A numerical method is convergent if, as h → 0, the numerical solution (xi)
n
i=1

converges to the true solution x(t).

This means that we can always get a good enough approximation from any convergent method
as long as we can decrease the step size indefinitely. That being said, it would be computationally
expensive to keep reducing the step size of Euler’s method.

If we want to improve the order at which error decreases, we may start by considering a Runge-
Kutta (RK) method. These are methods given by

xn+1 = xn + h

(
s∑

i=1

biki

)

where the bi are coefficients and the ki are “guesses” of the form

ki = f

tn + cih, xn + h

s∑
j=1

aijkj

 .

By using linear combinations of the ki, we want to reduce the truncation error to a certain order.
For compactness, a Runge-Kutta method is often expressed as its Butcher tableau

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

which is just an expression of matrices and vectors, analogous to

c A
b⊤

Runge-Kutta methods are extremely popular choices for higher order integrators. Consider a two
stage RK method

xn+1 = xn + h(b1k1 + b2k2)

with the ki defined
k1 = f (tn, xn)

k2 = f (tn + c2h, xn + ha21k1)

from their defintions. Note that the expressions are simplified, coming from how ki does not use any
information from kj if j ≥ i. This is required in order for the method to be explicit. Equivalently,
the A matrix is strictly lower triangular. The necessary conditions [21] are b1 + b2 = 1, b2c2 = 1/2
and a21 = c2 for the method to be second order accurate. These conditions are underdetermined,
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so there are several configurations to choose from. A popular choice for a second order RK method
is also referred to as the explicit trapezium method

0
1 1

1
2

1
2

where c1 = 0, c2 = 1 corresponds to evaluating k1 at the initial point and using k1 to make a forward
Euler estimate of xn+1, to use in computing k2. We then take an average of the two, hence the
“trapezium” name. Written out in full, the method is

xn+1 = xn +
h

2
(f(tn, xn) + f(tn + h, xn + hf(tn, xn)))

1.3 Structure Preservation

The methods discussed, particularly the Runge-Kutta methods, are excellent choices when we may
be crudely looking for an approximate solution without any regard to the concept of an “invariant”.
Many systems admit invariant quantities. Dynamical systems describing the motion of rigid bodies
admits conservation of energy. Chemical reaction systems admit conservation of mass. However,
in no part of our discussion on numerical methods did we acknowledge this requirement. Methods
such as Euler and the explicit Runge-Kutta schemes we have established are designed in order to
provide an approximate solution in the sense of having a particular truncation error. There is no
guarantee that these methods will preserve any invariant quantity of a system. This is not to say
they are guaranteed not to do so, and we will see methods only slightly generalised from those
already discussed, which do manage to behave well in terms of qualitative preservation.

However, before we begin introducing structure-preserving qualities, we will first establish more
results and provide discussions on the behaviour of numerical methods. We have only discussed
explicit methods so far, whereas a lot can be gained from the introduction of implicit methods. We
introduce these properties now since they are important later on when developing more powerful
methods in terms of preservation of structure.

1.4 Implicit Methods, Stability

Now that we have an understanding of some numerical methods, let us consider their use. The linear
test problem is the ODE and initial condition given by

dx

dt
= λx

x(0) = x0.

If λ has negative real part, then x goes to zero as t → ∞. Consider the forward Euler method
applied to this problem. The iteration is

xn+1 = xn + hf(tn, xn)

= xn + hλxn

= (1 + hλ)xn.
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Admittedly, we wouldn’t be using this example if it was going to work perfectly. We can see that if
we repeatedly apply the method, we get the expression

xn = (1 + hλ)nx0.

The numerical solution goes to zero if |1 + hλ| < 1. Therefore, suppose the true solution goes to
zero, meaning λ must be negative. The numerical solution goes to zero if −2 < hλ < 0. For values
of the timestep h where h > 2/|λ|, this behaviour is not respected. This concept is called A-stability.
The definition itself extends to complex values of hλ, which must be considered when considering
A-stability of a given numerical method.

Definition 1.2. A numerical method is A-stable if the numerical solution of ẋ = λx goes to zero
for all values of hλ in the left half of the complex plane.

Euler’s method is not A-stable because even if hλ is negative, there are values of h for which the
numerical solution does not decay. If we considered the explicit trapezium method from earlier, we
would find that this method is also not A-stable. In fact, there are no explicit Runge-Kutta methods
which are A-stable2. For our purposes, we need to introduce the concept of an implicit method.
The simplest of these is the implicit (backward) Euler method

xn+1 = xn + f(xn+1). (1.3)

This method requires knowing the value of xn+1 in order to compute xn+1. A step starts at xn and
integrates using the tangent of the curve f at xn+1 instead of xn. In actual implementation, the
backward Euler method involves solving the equation y = x+f(y) for xn+1 = y, which is potentially
non-linear. In general, implementing an implicit method can be expected to involve solving a system
of nonlinear equations at each step. Iterative methods for solving nonlinear equations often use
descent methods to converge to a solution, and stop when the change in the iteration is within a
given tolerance. These iterative methods are not expected to solve a nonlinear equation in a given
finite number of steps. As such, implementing implicit methods can be expensive.

Notions of computational cost aside, we are able to achieve better results in terms of stability
when considering implicit methods. Consider the backward Euler method applied to the linear test
problem:

xn+1 = xn + f(xn+1)

= xn + hλxn+1.

Rearranging, the equation becomes
(1− hλ)xn+1 = xn

or equivalently

xn+1 =
1

1− hλ
xn.

In order for the numerical solution to go to zero, we need this expression on the right-hand side to
be less than 1 in modulus, which is the same as requiring |1− hλ| > 1. Considering that h must be
real and positive, this inequality is not satisfied only for 0 < hλ < 2. If we consider problems where
λ is negative, then this is impossible, and so the backward Euler method is clearly A-stable. This is
a huge improvement on the forward Euler method, which very easily failed to respect decay of the
solution.

2We will not prove this now, but it will be justified later.
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We can also notice, however, that it is possible for backward Euler to decay when the actual
solution does not. This is because there are positive values of hλ which satisfy the inequality required
for the backward Euler solution to decay to zero. As a final example on A-stability, we introduce
the implicit midpoint method, given by

xn+1 = xn + hf

(
xn + xn+1

2

)
. (1.4)

applying to the linear test problem again we obtain

xn+1 = xn + hλ
xn+1 + xn

2

which rearranges to (
1− hλ

2

)
xn+1 =

(
1 +

hλ

2

)
xn

and so the numerical solution goes to zero if∣∣∣∣2 + hλ

2− hλ

∣∣∣∣ < 1.

This inequality is satisfied if hλ is closer to −2 than to 2, hence the regions of growth and decay are
exactly the right and left halves of the complex plane. The implicit midpoint method attains better
qualities for respect of growth or decay of the true solution in comparison to the Euler methods.

The reader may notice that the implicit midpoint method we have examined is similar in ap-
pearance to the explicit trapezium method from earlier, in that the evaluation of the right hand side
involves a combination of the point xn and a second stage. The implicit method uses xn+1 directly,
while the explicit method uses a guess in the form of a forward Euler estimate. The trapezium
scheme uses an average of exaluations of f , while the midpoint evaluates f at the midpoint (aver-
age) of the two points. For linear ODEs such as the linear test problem, trapezium and midpoint
schemes are identical.

We have explored how modifications of general methods are able to respect A-stability. The
next step is to begin introducing more general qualities of ODE systems which we preserve, and the
methods that are capable of preserving them. The reason we have given such a rigorous introduction
is that A-stability is strongly related to symplecticity, which we will soon begin discussing. We also
want to make sure we have a strong understanding of some basic numerical methods, not just in
terms of error, but also in terms of their cost to implement. For example, we have already discussed
how explicit methods are much more appealing in terms of their cost. We may want to consider
how much a method improves by introducing implicit components, and how much it may justify the
increased cost of the method. This problem can be further generalised to the differences inherent in
geometric methods.

1.5 Utility and Cost of Qualitative Preservation

For many problems we will explore in this report, we want to evaluate the accuracy of a method.
In order to do this, we might wish to evaluate an error metric by comparing an approximation to
an exact solution. For problems where we cannot write a solution analytically, we don’t have an
exact solution and will need to use a really good approximation instead. The easiest way to do this
is to use a standard integrator with a really low error tolerance. For our purposes, computations
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are implemented in MATLAB using the ode45() function. This scheme uses a pair3 of order 4
and 5 Runge-Kutta methods, which are not geometric methods. Therefore it seems like a poor
decision to put all this work into investigating geometric methods, and then when we need to
analyse them we compare their solutions to methods that completely ignore the desire for these
properties. The question to consider is that in practice, it may or may not be worth developing
structure preserving methods when the solution from a standard integrator will suffice. This is a
problem we will occasionally come back to.

1.6 Literature Review

The first large chapter of this project focuses on symplectic integration. An introduction to sym-
plecticity and Hamiltonian dynamics is given in the book “Numerical Hamiltonian Problems” by
Sanz-Serna and Calvo [29], originally published in 1994. The authors give an overview of Hamil-
tonian mechanics, aiming to give readers an accessible introduction to the topic, and is one of the
earlier texts in the field. Plenty of theory is consistent between the work we cover and the theory
explored in this text.

The book “Geometric Numerical Integration” by Hairer, Lubich and Wanner [13] was originally
published in 2002, and gives an extremely robust review of the theory of geometric integration.
The authors explore symplectic integration of Hamiltonian systems, as well as integrators that
preserve time symmetry, first integrals and Lie group structure. A rigorous understanding of the
theory behind these methods is given, as well as plenty of visual demonstrations on the behaviour of
these geometric integrators as compared to schemes such as Euler and explicit Runge-Kutta. The
book serves as an excellent reference text for the subject, and provides several results in symplectic
integration which we will look into.

Our second subject of interest is positivity preservation. The research paper on “Positivity-
Preserving Methods for Ordinary Differential Equations” [4] is the basis for the methods we explore
in the later part of this project. The discussion was published in 2022, and is the first to explore
problems considering the graph-Laplacian matrix. The authors give some examples of positivity-
preserving integrators for these problems, as well as discussing potential approximations for expensive
computations. Positivity preservation, while part of the subject of geometric numerical integration,
is a much more recent field of study. The integrators proposed by the paper are novel, and provide
interest in the development of the subject.

1.7 Structure

We have already introduced the theory of numerical methods and their properties. The rest of this
project is presented in two chapters where we explore the theory of geometric numerical integration
and its applications. The first chapter focuses on the symplectic integration of systems that can
be described in Hamiltonian dynamics. We explore some of the theory for symplectic integration
schemes and analyse their effectiveness when applied to particular problems.

The second of these chapters introduces positivity preservation. We investigate integration meth-
ods in this area, and consider how new schemes could be developed. However, we also delve further
into the properties of the integration schemes proposed in [4], and how they could be improved.
A large section of analysis is dedicated to the methods of approximation available, such that the

3The difference between two approximations can be used to estimate the true error
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order of these methods can be preserved. Aside from discussing methods of approximation, we also
propose our own adjustments to current numerical integration methods for positivity preservation.
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Chapter 2

Symplectic Integration

2.1 Hamiltonian Systems and Numerical Methods

2.1.1 Hamiltonian Dynamics

A Hamiltonian system on (q, p) [13] is given by

q̇ =
∂H

∂p
ṗ =

−∂H

∂q
.

We use q to denote position, and p to denote momentum. This is a special form of a general system of
ODEs ẋ = f(t, x). For this part of our discussion, we will primarily be concerned with autonomous
systems of the form ẋ = f(x).

We describe a system with its Hamiltonian H(q, p), used to describe the total energy present.
We can write the system as

d

dt

(
q
p

)
=

[
0 1
− 1 0

]
∂H

∂q
∂H

∂p

 . (2.1)

If we write x = (q, p)⊤ and denote the matrix as J , then the statement of a Hamiltonian system is
of the form

ẋ = J∇H(x). (2.2)

We call J the symplectic matrix. The Hamiltonian is a first integral of the system
For a d-dimensional problem, we instead denote the variables q1, . . . , qn, p1, . . . , pn as the position

and momentum in the directions of each basis vector respectively. Write x = (q1, . . . , qn, p1, . . . , pn).
Define J to be the matrix defined in blocks

J =

[
0n In
−In 0n

]
(2.3)

and the problem can be written as ẋ = J∇H(x). This is the general form for a Hamiltonian system.
Note that for a problem in d dimensions, x belongs to R2d. The ∇ operator is specifically defined
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in the (q, p) order for our purposes

∇ =



∂
∂q1
...
∂

∂qd
∂

∂p1

...
∂

∂qd


2.1.2 The Simple Harmonic Oscillator

First, we look at the simple harmonic oscillator mẍ = −kx. In Hamiltonian variables this is

q̇ =
p

m
, ṗ = mq̈ = −kq.

A suitable Hamiltonian [9] is

H =
1

2m
p2 +

1

2
kq2.

Applying the forward Euler method to the problem, we get

qn+1 = qn + h
∂H

∂p
(qn, pn) = qn +

pn
m

pn+1 = pn − h
∂H

∂q
(qn, pn) = pn − kqn

which can be written as a matrix equation(
qn+1

pn+1

)
=

[
1 1/m
−k 1

](
qn
pn

)
.

The matrix defines a map from one value of the numerical solution to the next. We can consider a
similar concept for the true solution of the problem, called the flow.

2.1.3 The Flow Map

Definition 2.1. The flow φt is a map of the system from an initial time to the time t. Specifically,
we write φt(α) = x(t) given the initial condition x(t = 0) = α. Hence the flow φt : R

2d → R2d is a
map from the initial point of the system to the time t.

The Jacobian matrix φ′
t(α) is often called the sensitivity of the flow. It describes the relative

change in the problem per change in initial conditions. We show the element-wise expression:

[φ′
t(α)]ij =

[
∂

∂α
φt(α)

]
ij

=

[
∂

∂α
x(t)

]
ij

=
∂xi(t)

∂αj

for i, j = 1, . . . , 2d, which is the Jacobian matrix.
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Definition 2.2. A flow is symplectic if it satisfies φ′
t(α)

⊤Jφ′
t(α) = J , where J is the symplectic

matrix.

Along with the flow of the system, we must consider the numerical flow, which is the map from
xn to xn+1 defined by a numerical method.

Definition 2.3. A numerical method defines a flow map Ψh by

xn+1 = Ψh(xn).

The sensitivity of the numerical flow is affected similarly by a change in initial conditions. How-
ever, due to the discrete form of a numerical solution we will not give a general form. The sensitivity
of the numerical flow map can however be written explicitly when applying a given method to a
given problem.

2.1.4 Symplectic Flow

The flow of a Hamiltonian system is, by definition, symplectic. Recall the example of the simple
harmonic oscillator. We can demonstrate symplecticity with the actual flow map. Note the general
closed form solution:

q(t) = A cos

(√
k

m
t

)
+B sin

(√
k

m
t

)

p(t) = B
√
km cos

(√
k

m
t

)
−A

√
km sin

(√
k

m
t

)
for arbitrary constants A and B. Impose initial conditions: suppose q(t = 0) = q0, p(t = 0) = p0.
Define ω =

√
k/m for shorthand, and apply the initial conditions to find that the coefficients are

A = q0, B = p0/mω Hence the particular solution is

q(t) = q0 cos (ωt) +
p0
mω

sin (ωt)

p(t) = p0 cos (ωt)− q0mω sin (ωt) .

We are in the position to evaluate the Jacobian entry-wise.

φ′
t

(
q0
p0

)
=

[
∂q
∂q0

∂q
∂p0

∂p
∂q0

∂p
∂p0

]
=

[
cos(ωt) 1

mω sin(ωt)
−mω sin(ωt) cos(ωt)

]
,

and if we now plug this into the symplectic identity we get

φ′
t(x0)

⊤Jφ′
t(x0) =

[
cos(ωt) −mω sin(ωt)
1

mω sin(ωt) cos(ωt)

] [
0 1
−1 0

] [
cos(ωt) 1

mω sin(ωt)
−mω sin(ωt) cos(ωt)

]
=

[
mω sin(ωt) cos(ωt)
− cos(ωt) 1

mω sin(ωt)

] [
cos(ωt) 1

mω sin(ωt)
−mω sin(ωt) cos(ωt)

]
=

[
mω sin(ωt) cos(ωt)−mω sin(ωt) cos(ωt) sin2(ωt) + cos2(ωt)

− cos2(ωt)− sin2(ωt) − 1
mω cos(ωt) sin(ωt) + 1

mω cos(ωt) sin(ωt)

]
=

[
0 1
−1 0

]
= J.

Hence the flow is symplectic.
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2.1.5 A symplectic integrator

With symplectic integration, we are interested in numerical methods for which the numerical flow
also attains symplecticity. One such example is the symplectic Euler method [13] given by(

qn+1

pn+1

)
=

(
qn
pn

)
+ hJ∇H(qn, pn+1).

For an arbitrary problem this method is implicit. However, many problems have a separate Hamilto-
nian that allows the iteration to be performed in two explicit steps. The simple harmonic oscillator
has a Hamiltonian H(q, p) = 1

2mp2 + 1
2kq

2 which can be written as H(q, p) = V (q) + T (p), where
V (q) represents kinetic energy and T (p) represents potential energy of the system [13, 9]. We expand
out the method as (

qn+1

pn+1

)
=

(
qn
pn

)
+ hJ

(
V ′(qn)
T ′(pn+1)

)
=

(
qn + h

mpn+1

pn − hkqn

)
.

On inspection, we can perform this iteration separably: compute pn+1 using pn and qn, then use qn
and pn+1 to compute qn+1. Important to note is that this is specifically the symplectic Euler-VT
method, since we evaluate V ′ and then T ′, and the symplectic Euler-TV method is an alternative
which computes in the opposite order analogously. This is of course assuming that the Hamiltonian
is separable, which it may not be. For simplicity we will stick with the VT method for examples.
We find an expression for the numerical flow:(

qn+1

pn+1

)
=

(
qn + h

m (pn − hωqn)
pn − hωqn

)
=

[
1− h2k

m
h
m

−hk 1

](
qn
pn

)
≡ Φh

(
qn
pn

)
and just like before, test the symplectic identity

Φ⊤JΦ =

[(
1− h2k

m

)
(−hk) +

(
h2k
m − 1

)
(−hk) 1− h2k

m + h2k
m

−h2k
m + h2k

m − 1 h
m − h

m

]
=

[
0 1
−1 0

]
= J.

Hence this method is symplectic for this example.

2.2 Further Hamiltonian Dynamics

2.2.1 Derivatives of Flow Maps

The flow map φt : x0 → x(t) gives us powerful insights into the behaviour of Hamiltonian integration.
Before giving a result on the symplecticity of Hamiltonian systems, we need some results on flow
maps. We will show expressions for the time derivatives of φt(α) and φ′

t(α). Starting with the flow,
its time derivative is

d

dt
(φt(x0)) =

d

dt
x(t)

= ẋ(t)

= J∇H(x(t))

= J∇H (φt(x0)) .
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We have a similar form for the time derivative of the sensitivity:

d

dt
(φ′

t(x0)) =
∂

∂x0

d

dt
φt(x0)

=
∂

∂x0

d

dt
x(t)

=
∂

∂x0
ẋ(t)

=
∂

∂x0
J∇H(x(t))

= J∇2H(x(t))

(
∂

∂x0
x(t)

)
= J∇2H(φt(x0))φ

′
t(x0).

2.2.2 Symplectic Flow of a Hamiltonian System

Earlier, we looked at the symplecticity of the flow of a particular Hamiltonian system. We will
now generalise this result to any Hamiltonian system. Symplecticity of the flow is equivalent to the
system itself being Hamiltonian.

Theorem 2.4. A dynamical system is Hamiltonian if and only if its flow is symplectic.

Proof. (⇒) Consider the flow of a Hamiltonian system at time t = 0. By definition, φt(x0) = x(t)
given x(0) = x0, therefore φ0(x0) = x0. Hence the sensitivity at t = 0 is φ′

0(x0) = I the identity
matrix. The symplectic identity is satisfied trivially: (φ′

0(x0))
⊤Jφ′

0(x0) = IJI = J .
Now, instead of finding an expression of the symplectic identity at time t, we show that this

quantity is unchanging in time. By differentiating, the expression distributes by the product rule:

d

dt

(
φ′
t(x0)

⊤Jφ′
t(x0)

)
=

(
d

dt
φ′
t(x0)

⊤
)
Jφ′

t(x0) + φ′
t(x0)

⊤J

(
d

dt
φ′
t(x0)

)
.

We can find an expression for the derivative term:

d

dt
φ′
t(x0) =

d

dt
J∇H(φt(x0))

= J∇2H(φt(x0))φ
′
t(x0).

Now plug this back in, becoming

d

dt

(
φ′
t(x0)

⊤Jφ′
t(x0)

)
=
(
J∇2H(φt)φ

′
t

)⊤
Jφ′

t + φ′
tJ
(
J∇2H(φt)φ

′
t

)
= (φ′

t)
⊤∇2H(φt)

⊤J⊤Jφ′
t + (φ′

t)
⊤J2∇2H(φt)φ

′
t(x0)

= (φ′
t)

⊤∇2H(φt)
⊤φ′

t − (φ′
t)

⊤∇2H(φt)φ
′
t

since J⊤J = I and J2 = −I. Under the assumption that the Hessian matrix ∇2H(φt) is symmetric,
this expression evaluates to zero and hence the symplectic identity is satisfied for all t and we are
done.

(⇐) Assuming that the sensitivity satisfies the symplectic identity, we want to show that the
system is Hamiltonian. For a general system, we have ẋ = f(x). We want to show that we can
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write f(x) = J∇H(x) for some function x, in order for the system to be Hamiltonian. The flow is
symplectic, so it satisfies

φ′
t(x0)

⊤Jφ′
t(x0) = J.

Differentiating this expression gives, similar to earlier,

φ′
t(x0)

⊤ ∂f

∂x0
(φt(x0))

⊤Jφ′
t(x0) + φ′

t(x0)
⊤J

∂f

∂x0
(φt(x0))φ

′
t(x0) = 0.

By taking factors on the left and right, this is

φ′
t(x0)

⊤
[
∂f

∂x0
(φt(x0))

⊤J + J
∂f

∂x0
(φt(x0))

]
φ′
t(x0) = 0.

This must be true for all t, so if we set t = 0 the sensitivity matrix appearing on both the right and
left is the identity. Because J = −J⊤, we have that[

J
∂f

∂x0

]
=

[
J
∂f

∂x0

]⊤
i.e. the matrix is symmetric. The required result is given in [13], namely that f(x) can be written
in the form J∇H(x).

We now properly understand the link between Hamiltonian mechanics and symplectic integration.
The formal definition for a symplectic integrator is that the method maintains the form dqi ∧ dpi
with i = 1, . . . , d for an d-dimensional problem [13]. The form is an infinitesimal area generated
by the infinitesimals in q, p. For a one-dimensional problem, we can produce the phase portrait
by plotting p against q. A single point in the phase portrait represents the state of the dynamical
system at a fixed point in time. The flow and the numerical flow are maps between points in the
phase portrait. If we think of the phase portrait as a solution space for a one-dimensional dynamical
system, we can say that symplectic methods preserve the area of the solution space. This is the
paradigm of symplectic integration: by maintaining area of the phase space under mapping of the
numerical flow, we maintain qualitative behaviour of the ODE over long timespans. Furthermore,
the conservation of area is equivalent to a symplectic method maintaining a first integral of the
system, which is the Hamiltonian H. We will however make it clear that a symplectic integrator
does not exactly preserve the Hamiltonian of the problem, this being something we will explore in
more detail.

In order to apply a symplectic integration method to a problem, we need an expression for the
Hamiltonian of that problem, and we need a numerical method for which the symplecticity of the
flow is preserved.

2.2.3 The Simple Pendulum

The simple pendulum is the one-dimensional system defined by

ml
d2θ

dt2
= −mg sin(θ)

For this problem, we define q = θ, p = θ̇ and the Hamiltonian [9] as

H(q, p) =
1

2
p2 + k2(1− cos(q))

16



-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

q

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p

Explicit Euler

Implicit Midpoint

Implicit Euler

Figure 2.1: Integration of the simple pendulum as a Hamiltonian mechanics problem, plotted as a
phase portrait. The explicit Euler method gradually diverges, a consequence of it lacking A-stability.
The implicit Euler method converges to zero. Using implicit midpoint, we stay on the path followed
by the pendulum, since this method is symplectic.

where k2 = g/l. This Hamiltonian can be obtained by integrating the system, and is therefore
a conserved quantity. We will look at a selection of numerical methods applied to this problem.
Recall Euler’s method, which takes the form xn+1 = xn + hJ∇H(xn) for a Hamiltonian system.
This expands to:(

qn+1

pn+1

)E

=

(
qn
pn

)
+ h

[
0 1
−1 0

](
k2 sin(qn)

pn

)
=

(
qn + hpn

pn − hk2 sin(qn)

)
.

The Implicit Midpoint method gives us

(
qn+1

pn+1

)M

=

(
qn
pn

)
+ h

[
0 1
−1 0

]k2 sin

(
qn + qn+1

2

)
pn + pn+1

2

 =

 qn + h

(
pn + pn+1

2

)
pn − hk2 sin

(
qn+qn+1

2

)
 .

Finally, applying the Symplectic Euler-VT method yields(
qn+1

pn+1

)S

=

(
qn
pn

)
+ h

[
0 1
−1 0

](
k2 sin(qn)

pn+1

)
=

(
qn + hpn+1

pn − hk2 sin(qn)

)
(2.4)

See Figure 2.1, where we have applied three methods to the simple pendulum problem. Only
when applying the implicit midpoint method do the oscillations remain on a loop in the phase
portrait. The Symplectic Euler method is not shown, since it is identical to the result obtained from
the implicit midpoint method. The implicit midpoint method is a symplectic method, and probably
the simplest to demonstrate.
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Symplectic methods preserve the oscillation of the pendulum. This means the pendulum oscillates
consistently, without any drift. In the explicit and implicit Euler methods, we observe a divergence
or convergence of the bounds of oscillation respectively.

It is important to note at the moment that the only examples we have looked at have closed
form solutions. Our results so far only serve for understanding the definition of symplecticity. We
now look at some stronger results about numerical methods.

2.2.4 The Adjoint Flow Map

We may now want to look at forming higher order symplectic methods. In order to do so, we need
to consider generalised properties of flow maps which define these methods. One such property is
the adjoint map.

Definition 2.5. Given a method defined by a numerical flow Ψh, the adjoint Ψ
∗
h is the method that

satisfies
Ψ∗

−h = Ψ−1
h .

In words, stepping backward with the adjoint method is equivalent to stepping forward with the
inverse. Adjoint methods are very useful. Given an arbitrary method Ψh, the method Ψh/2 ◦Ψ∗

h/2 is

symmetric. A symmetric method is a method that satisfies Ψ−1
h = Ψ−h. This means if we integrate

forwards in time by a particular step, and then integrate back, we return to the original value
since we are equivalently applying the inverse. Time symmetric methods are geometric integrators
themselves, preserving time symmetry, however this is not something we will explore.

We can show that the implicit Euler method is the adjoint of explicit Euler [29]. First, let
ΨI

h denote the implicit method and let ΨE
h denote the explicit method. We want to show that

ΨE
h = (ΨI

−h)
−1. This is equivalent to ΨI

−h ◦ΨE
h (x) = x. If we expand this composition, we obtain

ΦI
−h

(
ΦE

j (x)
)
= ΦI

−h (x+ hf(x))

= x+ hf(x)− hf
(
ΦI

−h (x+ hf(x))
)

= x+ hf(x)− hf
(
ΦI

−h

(
ΦE

h (x)
))

,

and ΦI
−h(Φ

E
h (x)) = x solves this equation. Hence (ΦI

−h)
−1 = ΦE

h . Note that the explicit and implicit
Euler methods cannot be symmetric because they are adjoint.

There are several properties of symplectic methods which may be of interest now. We have
not shown that (1) the adjoint of a symplectic method is symplectic, and (2) the composition of
symplectic methods is symplectic. These are relatively simple properties which can be proven from
the defintions, but it will help our understanding to cover these.

Proposition 2.6. The adjoint of a symplectic method is symplectic.

Proof. First of all, the definition of the adjoint method states Φ∗
h = Φ−1

−h. By algebraic manipulation,

Φ⊤
h JΦh = J

⇒ Φ⊤
−hJΦ−h = J

⇒ J = (Φ−1
−h)

⊤J(Φ−1
−h) = (Φ∗

h)
⊤J(Φ∗

h)

and so clearly the adjoint is symplectic.

This result will be used in tandem with the composition of maps.
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Proposition 2.7. If Φh and Ψh are two symplectic maps, then their composition Φh ◦Ψh is sym-
plectic.

Proof. This is done similarly. We have

(ΦhΨh)
⊤
J (ΦhΨh) = Ψ⊤

hΦ
⊤
h JΦhΨh

= Ψ⊤
h JΨh

= J.

Therefore the composition of symplectic maps is symplectic.

We can now introduce a new method using these results.

2.2.5 The Störmer-Verlet Method

Earlier, we looked at the Symplectic Euler method, which is a modification of the Euler methods
for Hamiltonian integration. If the Hamiltonian is separable such that H(q, p) = V (q) + T (p), then
the Symplectic Euler method is explicit. This is because in the Symplectic Euler-VT step, we use
pn and qn to compute pn+1, then use pn+1 and qn to compute qn+1. This is exactly the method we
applied in our earlier example introducing the Symplectic Euler method. However, the Symplectic
Euler method is generally implicit because a given Hamiltonian for a problem may not be separable.
Denote the Symplectic Euler step by Ψh. The Störmer-Verlet method [13, 9] is defined by the step
Ψ∗

h/2 ◦Ψh/2. Formally, this is

pn+ 1
2
= pn − h

2
∇qH

(
qn, pn+ 1

2

)
qn+1 = qn +

h

2

(
∇pH

(
qn, pn+ 1

2

)
+∇pH

(
qn+1, pn+ 1

2

))
pn+1 = pn+ 1

2
− h

2
∇qH

(
qn+1, pn+ 1

2

)
.

The Störmer-Verlet method is time-symmetric and second order accurate [9]. We start with a step
of the symplectic Euler method of length h/2, followed by its adjoint in which we step in (q, p) in
the opposite order. This explains the structure where we have a step in q of length h in the middle
of two steps in p of length h/2.

We have defined the Störmer-Verlet method by the map Ψ∗
h/2 ◦ Ψh/2, but we may also define a

method as Ψh/2 ◦Ψ∗
h/2, which is an alternative Störmer-Verlet scheme which is also time-symmetric

and second order.
The composition of a method with its adjoint leads to a method which is necessarily of even

order [29, 14, 9].

2.2.6 Mechanics

Before the next example, it helps to define context around the mechanics of Hamiltonian system, In
many cases, a Hamiltonian system has a HamiltonianH that we can express asH(q, p) = T (p)+V (q).
The Hamiltonian is a conserved quantity of the system, such as the total energy being exchanged.
A Lagrangian for a system can be defined as L(q, p) = T (p)−V (q), a difference in the energies. The
natural conjugate momentum is defined by

pk :=
∂L

∂q̇k
(2.5)
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Figure 2.2: Integration of the two mass model for phonation for t ∈ [0, 1000]. Figures show the
oscillation bounds, plotting q2 against q1. In the left figure, we observe that a symplectic method
retains the bounds of oscillation, whereas using ode45() the explicit Runge-Kutta method is not as
well behaved and the bounds are not as clear. Parameters used are α = 1, λ = 0.5, β = 3, ω = 0.3.
Initial positions q1 = 1 and q2 = 3.79 with momentum zero.

for k = 1, . . . , n. If we have a problem formulated generally, position is usually already defined.
Natural conjugate momentum means we can obtain an expression for momentum which aligns with
the properties of Hamiltonian dynamics. It often helps when defining and solving our own problems
for the variables to be defined in this way.

2.2.7 A Model for Phonation

This example is based on the two mass model from “Models for Phonation”1. A vocal cord is
modelled by two stiffness-coupled masses, and their one-dimensional displacements are given by u
and v. The governing equation for motion, from Newton’s law, is

d2u

dt2
= 1− u+ β

(
1− 1

u2

)
+ ω(v − u)

α
d2v

dt2
= λ(1− v) + β

(
1− 1

v2

)
+ ω(u− v)

We first express this as a Hamiltonian problem. Denote q1 = u, q2 = v. We define momentum
p1 = q̇1, p2 = αq̇2. A Hamiltonian, obtained by integrating the system, is

H =
1

2

(
p21 +

1

α
p22

)
+

ω

2
(q1 − q2)

2 − F (q1)−G(q2)

1https://willwoolf.github.io/phon.pdf
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where

F (q1) = q1 −
1

2
q21 + β

(
q1 +

1

q1

)
G(q2) = λ

(
q2 −

1

2
q22

)
+ β

(
q2 +

1

q2

)
.

Therefore, in Hamiltonian variables the coupled ODEs can be expressed as

q̇1 = p1 q̇2 =
1

α
p2

ṗ1 = F ′(q1)− ω(q1 − q2) ṗ2 = G′(q2)− ω(q2 − q1)

stating the problem in Hamiltonian form. Since the Hamiltonian is a conserved quantity, we can
use it to evaluate the behaviour of the integration method. We can apply the Hamiltonian function
to our numerical solutions, to verify that the quantity is in fact conserved by the numerical method.
A symplectic method does not preserve the Hamiltonian, but it preserves a particular Hamiltonian.
The closeness of this Hamiltonian can be shown via backward error analysis. A regular integration
method, such as an explicit Runge-Kutta scheme, will fail to preserve the Hamiltonian and the
constant will diverge. If the value changes by a significant amount, we can observe loss of qualitative
behaviour. Observe how, in Figure 2.2, we have shown an immediate comparison of the clarity of
results from using a symplectic integrator, versus using the efficient but not as stable explicit Runge-
Kutta methods applied by MATLAB’s ode45() integrator.

2.3 Generalised Symplectic Methods

2.3.1 Conjugacy

Before looking at more symplectic methods, we will cover a brief result on conjugacy of methods.
Consider the implicit midpoint and trapezium methods. Implicit midpoint is the method

ΦM
h (xn) = xn+1 = xn + hf

(
xn + xn+1

2

)
.

The trapezium method is similar:

ΦT
j (xn) = xn+1 = xn + h

(
f(xn) + f(xn+1)

2

)
The implicit midpoint method is symplectic, but the trapezium method is not. Interestingly, the
trapezium method has excellent behaviour in preserving phase-space volume, despite not being a
symplectic method. It can be shown that these are conjugate methods [29], meaning that they
exhibit similar long-term behaviour. Two methods Ψh,Φh are conjugate if there exists a map χ
such that Φh = χ−1Ψhχ. Consider applying a method Φh N times. Conjugacy shows that

(Φh)
N

=
(
χ−1Ψhχ

)N
=
(
χ−1Ψhχ

) (
χ−1Ψhχ

)
. . .
(
χ−1Ψhχ

)︸ ︷︷ ︸
N

= χ−1(Ψh)
Nχ.

Therefore, conjugate methods remain separated by the conjugacy map χ for an arbitrary number of
iterations.
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2.3.2 Runge-Kutta Methods

These are methods of the form

xn+1 = xn + h

(
s∑

i=1

biki

)
as defined in the introduction, equivalently defined by the Butcher tableau

c A
b⊤.

We will first consider A-stability.
Consider the linear test problem ẋ = λx. We have already explored stability for the basic Euler

methods. We will look at a general explicit 3-stage method.

Example 2.8. First, find expressions for the ki:

k1 = λxn,

k2 = λ (xn + ha21k1)

=
(
λ+ ha21λ

2
)
xn,

k3 = λ (xn + ha31k1 + ha32k2)

= λ
(
xn + ha31λxn + ha32

(
λ+ ha21λ

2
)
xn

)
=
(
λ+ ha31λ

2 + ha32λ
2 + h2a32a21λ

3
)
xn.

therefore

xn+1 = xn + h (b1k1 + b2k2 + b3k3)

= xn + hb1λxn + hb2
(
λ+ ha21λ

2
)
xn + hb3

(
λ+ ha31λ

2 + ha32λ
2 + h2a32a21λ

3
)
xn

=
(
1 + (b1 + b2 + b3)hλ+ (b2a21 + b3(a31 + a32))h

2λ2 + (b3a32a21)h
3λ3
)
xn.

This coefficient term is a polynomial on hλ, which we denote by r(hλ). To ensure A-stability,
we require that |r(hλ)| < 1 for hλ in the left half of the complex plane. For this example of an
explicit method, it cannot be A-stable since the stability function is a polynomial. Any non-constant
polynomial p(y) will diverge to ±∞ as |y| → ∞, hence the bound will not be attained.

We will now consider the A-stability of Runge-Kutta methods in general.

2.3.3 A-Stable Runge-Kutta Methods

We start by considering the A-stability of Runge-Kutta methods. We know that if these exist, they
cannot be explicit. This analysis borrows from [21]. We will consider the linear test problem ẋ = λx
in the scalar case for simplicity. Recall that the formulation of the ki is given by

ki = xn + hλ

s∑
j=1

aijkj

for i = 1, . . . , s. Let k be the vector of ki terms, in which case we have

k = exn + hλAk
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where e is the vector of ones. This expression rearranges to

k = [I − hλA]
−1

exn

assuming the inverse exists. Therefore the method can be expressed as

xn+1 = xn + hλ

s∑
i=1

biki

= xn + hλb⊤k

= xn + hλb⊤ [I − hλA]
−1

exn

=
[
1 + hλb⊤ [I − hλA]

−1
e
]
xn.

We have a direct operation which describes the RK method, which we define for simplicity as

r(z) = 1 + zb⊤ [I − zA]
−1

e (2.6)

such that the method takes the form xn = [r(hλ)]nx0. We can assume x0 = 1 without loss of
generality so the method is

xn = [r(hλ)]n

If we can classify that r(z) < 1 for any z with negative real part, then the method is A-stable.
In order to characterise this expression of r, involving the inverse of a matrix, we need to define

the adjugate matrix in order to give a particular expression for a matrix inverse.

Definition 2.9 (The Adjugate Matrix [18]). For an invertible matrix A we can write its inverse as

A−1 =
adj(A)

det(A)

where det(A) is the determinant of A and adj(A) is the transpose of the cofactor matrix C, so

adj(A) = C⊤

where
Cij = (−1)i+j det Āij

where Āij is the submatrix obtained by removing the i-th row and j-th column from A.

We can show that this expression for the inverse holds for a 2× 2 matrix.

Example 2.10. Consider the matrix given by

A =

[
a b
c d

]
.

The determinant is given by det(A) = ad − bc. For each entry in the cofactor matrix, we remove
row i and column j to compute a determinant of a 1× 1 submatrix. Applying the formula from the
definition, we end up with

C =

[
d −c
−b a

]
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Therefore,

A−1 =
adj(A)

det(A)
=

1

det(A)
C⊤ =

1

ad− bc

[
d −b
−c a

]
.

which should be a familiar expression for a 2× 2 matrix inverse.

We use this relation to characterise the matrix inverse term which appears in r(z), see Equation
2.6, which allows us to write the stability function clearly as a rational function.

Lemma 2.11 (Iserles (2009) [21]). The stability function of an s-stage Runge-Kutta method can
be written as a rational function where the numerator and denominator are degree s polynomials.

Proof. The term [I − hA]−1 appearing in Equation 2.6 can be written as

[I − zA]
−1

=
adj(I − zA)

det(I − zA)
.

For an s-stage Runge-Kutta method, A has size s. The determinant of I − zA is a polynomial on z
of degree at most s. Similarly, every entry in the adjugate is the determinant of an (s− 1)× (s− 1)
submatrix, hence is a polynomial of degree at most s− 1. We can re-write Equation 2.6 as

r(z) = 1 +
1

det(I − zA)

(
zb⊤ adj(I − zA)e

)
The 1 doesn’t change the degree of the function, and both the det(I − zA) and zb⊤ [adj(I − zA)] e
terms are degree s polynomials. Therefore the stability function for a Runge-Kutta method can be
written as a rational function on hλ, being a quotient of two polynomials of degree s.

The inclusion of the determinant term simplifies this expression when we consider an explicit
method. In this case, A is strictly lower triangular, and therefore I−zA is a lower triangular matrix
with ones on the diagonal. Therefore det(I − zA) = 1 and the stability function is a degree s
polynomial.

The stability function can also be written in the simpler form

r(z) =
det(I − zA+ zeb⊤)

det(I − zA)
(2.7)

given in [21]. It remains to show that there are Runge-Kutta methods for which the expression
r(z) < 1 is satisfied for z with negative real part. Iserles shows that if a stability function is a
particular kind of approximation to the exponential ez, then the corresponding method will be
A-stable. The function ez satisfies the bound we are looking for in a stability function.

Lemma 2.12 (Iserles (2009) [21]). Suppose r(z) is the stability function for a Runge-Kutta method
of order p. Then

r(z) = ez +O(zp+1)

Proof. The stability function came from the fact that the method can be expressed as xn+1 =
r(hλ)xn. Similarly, xn+1 = ehλxn is the analytical solution to the linear test problem at x(tn+1)
given that x(tn) = xn. Since the method is accurate to order p, we must have that ehλ − r(hλ) =
O((hλ)p+1) by definition.

In order to preserve the condition of A-stability, we use the Padé approximation.
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Definition 2.13 (The Padé Approximant [19]). The Padé [n,m] approximant to a function f(z) is
the unique rational function pn,m(z)/qn,m(z) that satisfies

f(z)− pn,m(z)

qn,m(z)
= O(zp+q+1).

where pn,m is a polynomial of degree n and qn,m of degree m.

Padé approximants are able to remain bounded as |z| → ∞ [30]. A polynomial approximation
will always diverge for large z and cannot have any discontinuity. This motivates the use of Padé
approximations in this context as stability functions for Runge-Kutta methods. We now want to find
Runge-Kutta methods for which the stability functions are Padé approximations to the exponential.

Remark 2.14. The [1, 1] Padé approximant to the exponential is given by

r1,1(z) =
p1,1(z)

q1,1(z)
=

1 + z
2

1− z
2

and the [2, 2] approximant is

r2,2(z) =
p2,2(z)

q2,2(z)
=

1 + z
2 + z2

12

1− z
2 + z2

12

If p has degree higher than q, then the approximation will diverge for |z| → ∞ so these approxi-
mations are unusable. We will consider primarily the diagonal (n = m) Padé approximants. We call
an approximation A-acceptable if it obeys the bound required for the method to be A-stable [21].
Diagonal Padé approximants to the exponential are A-acceptable [30].

We will now introduce the Gauss-Legendre Runge-Kutta (GLRK) methods in general. Recall
the implicit midpoint rule, which has Butcher tableau

1
2

1
2

1
.

This is a second order method but has s = 1, which is an optimal order for the number of steps.
This is the general aim for the Gauss-Legendre Runge-Kutta methods, achieving order 2s for s steps.
The fourth order GLRK method on two stages is given by the tableau

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4
1
2

1
2

.

These methods are implicit and can be complicated and expensive to implement, but they have ex-
cellent behaviour. In this context, we want to know about stability. The following is a simplification
of a theorem from [21] using knowledge of A-acceptability [30].

Theorem 2.15. The Gauss-Legendre Runge-Kutta methods are A-stable.

Proof. Assume we apply a GLRK method on s stages to the linear test problem ẋ = λx. By Lemma
2.11, the stability function of this method can be written as a rational function where the numerator
and denominator are degree s polynomials. Applying Lemma 2.12, this rational function is accurate
to the exponential to degree 2s since this is the order of the method. Since the Padé approximation
to the exponential is unique, this rational function is the [s, s] Padé approximant and hence the
method is A-stable.
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2.3.4 Symplectic Runge-Kutta Methods

We have shown that all A-stable Runge-Kutta methods are necessarily implicit, with examples of
particular A-stable methods. We will now examine the theory behind symplectic Runge-Kutta
methods. Again, consider a Runge-Kutta method defined by the stability function r(z). We first
cover a result on the stability functions of symplectic Runge-Kutta methods.

Proposition 2.16 (Hairer, Leone [12]). If a stability function r(z) method satisfies

r(z)r(−z) = 1

for all z ∈ C then there exists a symplectic Runge-Kutta method which has stability function r(z)

Proof. We will not cover the proof, which is given in the paper [12] and uses results outside of our
analysis.

Hairer and Leone give an example of how a method of this kind relates to the requirement of
symplecticity.

Example 2.17 (The Linear Oscillator [12]). Consider the system on complex u given by

u̇ = iωu.

with ω > 0 and the initial condition u(t = 0) = 1. This is the linear oscillator, as the trajectory is
the circle of radius 1. If we apply a Runge-Kutta method to this problem, we obtain the numerical
solution un = [r(iωh)]n. Therefore, in order for this RK method to be symplectic we require
|r(iωh)| = 1 given h > 0, since the absolute value of u has to remain constant. We can let z = ωh
and require |r(iz)| = 1. However, this is equivalent to requiring r(z)r(−z) = 1 which is our condition.

This is a very powerful result on symplectic RK methods. We can guarantee the existence of a
symplectic RK method if we have any stability function that satisfies our proposition. Note that
this provides a distinction between symplectic and A-stable RK methods, since a stability function
may induce a symplectic RK method which is not A-stable.

In order to explore symplectic methods we will again consider diagonal Padé approximants to
the exponential. It turns out that all diagonal Padé approximants to the exponential are of the form

rn,n(z) =
p(z)

p(−z)

for a polynomial p(z) of degree n, consequence of [19]. Explicitly, the form is

pn,m(z) =

n∑
j=0

(n+m− j)!n!

(n+m)!j!(n− j)!
zj

qn,m(z) =

m∑
j=0

(n+m− j)!m!

(n+m)!j!(m− j)!
(−z)j .

If we take n = m for a diagonal approximation then the requirement is clear. Now, if we consider
r(z) to be a diagonal Padé approximation to the exponential then

r(z)r(−z) =
p(z)

p(−z)

p(−z)

p(z)
= 1
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for a polynomial p(z), and hence the Runge-Kutta method with stability function r(z) is symplectic.
However, we already know from the previous discussion on A-stable methods that these are the
GLRK methods. Hence the GLRK methods are symplectic.

There is another result on the properties of symplectic RK methods that we can consider.

Theorem 2.18 (Hairer, Lubich, Wanner (2006) [13]). If a Runge-Kutta method satisfies

biaij + bjaji − bibj = 0 (2.8)

for all i, j = 1, . . . , s then it is symplectic.

Proof. This proof is in two parts. First, we want to show that any Runge-Kutta method must
satisfy this rule in order to preserve quadratic invariants of the system. Then, we show that any
Runge-Kutta method which preserves these invariants is in fact symplectic.

Part I: Start by considering the recurrence x1 = x0 + h
∑s

j=1 biki and let C be an arbitrary
matrix, in which case we can express a quadratic as

x⊤
1 Cx1 = x⊤

0 Cx0 + h

s∑
i=1

bik
⊤
i Cx0 + h

s∑
j=1

bjx
⊤
0 Ckj + h2

s∑
i=1

s∑
j=1

bibjk
⊤
i Ckj (2.9)

by expanding. We can make a simplification by writing ki = f(Xi) = f
(
x0 + h

∑s
j=1 aijkj

)
, which

is the definition of the ki evaluations. The f is the function which defines the dynamical system.
We work out the expansion:

x⊤
1 Cx1 = x⊤

0 Cx0 + h

s∑
i=1

bif(Xi)
⊤CXi − h

s∑
i=1

bif(Xi)
⊤C

h

s∑
j=1

aijkj


+ h

s∑
j=1

bjX
⊤
j Cf(Xj)− h

s∑
j=1

bj

(
h

s∑
i=1

ajiki

)
Cf(Xj)

+ h2
s∑

i=1

s∑
j−1

bibjk
⊤
i Ckj

= x⊤
0 Cx0 + h

s∑
i=1

bi

(
d

dt
X⊤

i CXi

)
+ h2

s∑
i=1

s∑
j=1

(bibj − biaij − bjaji)k
⊤
i Ckj

Note the application of product rule differentiation, namely that

X⊤Cf(X) + f(X)⊤CX =
d

dt
(X⊤CX)

and this quadratic first integral. Therefore we require bibj−biaij−bjaji = 0 in order for the method
to preserve quadratic invariants.

Part II: Our dynamical system is defined as ẋ = f(x) with the initial condition x(0) = x0. If we
differentiate this problem with respect to x0, we obtain

d

dt
φ′
t(x0) = f ′(φt(x0))φ

′
t(x0),

φ′
0(x0) = I

(2.10)
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This is a differential equation involving the analytical flow map φt(x0). We will use the result
that differentiating with respect to the initial condition and applying a symplectic RK method are
commutative: either way we apply these operations, we end with the same result [13]. The analytic
symplecticity criterion is φ⊤

t Jφt = J , which is a quadratic invariant of the system. Assuming
that Ψ denotes a symplectic RK method, we have Ψ⊤

n JΨn as the numerical approximation of the
symplecticity constant. If we apply a symplectic RK method to the original problem, we obtain the
numerical flow Ψn. Equivalently, if we apply a symplectic RK method to the variational equation
2.10, we have a numerical sensitivity Ψ′

n. Because the operations are commutative, applying a
symplectic RK method to the variational equation respects the symplecticity condition. This is
because this operation has the same result as applying the symplectic RK method first, and then
differentiating with respect to x0. Therefore, Runge-Kutta methods which preserve quadratic first
integrals are symplectic.

The Gauss-Legendre Runge-Kutta methods, which we know are symplectic, also satisfy the
identity given in Theorem 2.18 [13]. However, the goal of this section has been to introduce properties
that provide insight on symplectic RK methods. We have only given the example of these methods,
and the reader should understand that Theorem 2.18 is not a requirement for a symplectic RK
scheme.

2.3.5 Gauss-Legendre Runge-Kutta Methods

The Gauss methods are powerful choices for Runge-Kutta integration schemes. We have shown that
explicit RK methods are not A-stable, since their stability functions are polynomials. Similarly,
none of our analysis has concerned explicit symplectic RK methods. We cannot satisfy Proposition
2.16 with any explicit method since a stability function is not bounded as |z| → ∞. Theorem 2.18
will only be valid for an implicit method.

In comparison, the Gauss-Legendre Runge-Kutta methods satisfy both A-stability and sym-
plecticity. They are implicit methods and therefore more challenging to implement, however they
compensate by their quality-preserving properties which are far better than general-purpose explicit
methods. Furthermore, they are capable of order O(h2s) accuracy on s stages [21].

2.4 Analysis of Symplectic Methods

For all the following analysis, we consider the behaviour of a symplectic integrator and how it depends
on the step size used. When applying a symplectic integrator, the step size must be constant [9] so
we can regard it as an independed parameter.

2.4.1 Backward Error Analysis

When we perform numerical integration on a dynamical system given by ẋ = f(x), we obtain a
numerical solution in the form of the iteration xn+1 = Φh(xn), where Φ is a method of our choice.
This is a numerical solution, which may converge to the exact solution as h → 0, but it is not exact.
In backward error analysis, we look at the problem from another perspective. Instead of considering
the closeness of our numerical solution to the system, we think of the numerical solution as an exact
solution to a perturbed problem, and analyse the perturbation of this new problem to the original.

These methods and theorems follow the methods in Chapter IX of [13]. We want to find a
modified equation ˙̃x = fh(x̃) which is similar to ẋ = f(x), and which is exactly solved by the
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obtained numerical solution, i.e, xn = x̃(nh). We expect the perturbed problem to be of the form

˙̃x = fh(x̃) = f(x̃) + hf2(x̃) + h2f3(x̃) + . . . ,

namely as a polynomial expansion about the original problem. Important to note is that this series
is not guaranteed to converge as an infinite sum. Instead, we require a truncation of the series,
which we perform by identifying bounds on the functions fi, and truncate such that an infinimum
of upper bounds is attained [9]. We want to match this expression to the numerical method such
that x̃(t + h) ≡ Φh(x̃(t)). Now consider the expansion of the perturbed problem as a Taylor series
about a fixed time t. Write

x̃(t+ h) = x̃(t) + h ˙̃x(t) +
h2

2
¨̃x(t) + . . .

and recall we have assumed that x̃(t) = fh(x̃). We can use this to expand the first few terms for
clarity:

x̃(t+ h) = x̃(t) + (fh(x̃))h

+ (f ′
h(x̃)fh(x̃))h

2

+ ((f ′′
h (x̃) + f ′

h(x̃))f
′
h(x̃)fh(x̃))h

3

+ . . .

However, recall from the defintion of the perturbed problem that fh(x) is a polynomial on h. There-
fore, the terms expand as

x̃(t+ h) = x̃(t) +
(
f(x̃) + hf2(x̃) + h2f3(x̃) + . . .

)
h

+
1

2!
((f ′(x̃) + hf ′

2(x̃) + . . .)(f(x̃) + hf2(x̃) + . . .))h2

+
1

3!
(((f ′′(x̃) + f ′(x̃)) + . . .)(f ′(x̃) + . . .)(f(x̃) + . . .))h3

+ . . .

.

Now consider the numerical method. Assume that it takes the form

Φh(x) = x+ hf(x) + h2d2(x) + h3d3(x) + . . .

where we can find the di functions from the defined method. In order to satisfy the eqivalence we
want, we match the coefficients of h in x̃(t+ h) and Φh(x̃(t)):

h0 : x = x

h1 : f(x) = f(x)

h2 : d2(x) = f2(x) +
1

2!
f ′(x)f(x)

h3 : d3(x) = f3(x) +
1

2!
(f ′(x)f2(x) + f ′

2(x)f(x)) +
1

3!
(f ′′(x)f ′(x)f(x) + f ′(x)f ′(x)f(x))

...

Since we can find the di from the definition of the numerical method, and we know f(x) from the
definition of the system, we can rearrange these expressions to find the functions fi that define the
system. Therefore it is clear that the numerical solution provides a perturbed problem for which
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Figure 2.3: Evaluating the Hamiltonian for the model for phonation, integrated using the Störmer-
Verlet method. Initial conditions are the same as that of Figure 2.2. The error of the method is
shown to be O(h2) in evaluating the Hamiltonian.

it is an exact solution at discrete time points. Furthermore, if we assume that the given method is
O(hp), then we have that fi = 0 for i ≤ p. This is because the expansions of x̃(t+ h) and x(t+ h)
will be the same up to O(hp).

We next want to consider a Hamiltonian system, and the nature of a modified Hamiltonian
obtained from a numerical method.

2.4.2 The Perturbed Hamiltonian

We move on to discuss results on the closeness of the Hamiltonian that corresponds to the problem
solved by the numerical method. This is an interesting result from backward error analysis. If we can
deduce that the modified Hamiltonian is sufficiently close to the original, this merits the numerical
solution in terms of preservation of quality.

Before considering the modified Hamiltonian, we need to introduce the concept of a generat-
ing function. This methodology is covered in [9] in a wider analysis. These are important when
considering a change of coordinates. First, recall Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi =

−∂H

∂qi
.

Define a new coordinate pair Qi = Qi(q, p, t) and Pi = Pi(q, p, t). There must be another Hamilto-
nian H̃ which describes these transformed coordinates

Q̇i =
∂H̃

∂Pi
, Ṗi =

−∂H̃

∂Qi
.

This modified Hamiltonian tells us about the behaviour of the solution in this new coordinate system.
The motivation for this transformation is the aim of describing the behaviour of the system in a
potentially simpler form using a different coordinate system. There is a relation between these
coordinates which is given by

d∑
i=1

pidqi −Hdt =

d∑
i=1

PidQi − H̃dt+ dF (q, p). (2.11)
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This is an equation involving differential forms dqi,dt, etc. but the key takeaway is the relationship
involving the expression dF between coordinate systems. The relationship between the Hamiltonians
themselves is

H̃(Q,P, t) = H(q, p, t) +
∂F

∂t
.

We call F a generating function. This is because the definition of F can be used to reconstruct the
coordinate transformation. Note also that we wrote dF (q, p) on the original coordinates above, but
if we know the transformation then we can write F (q, p) and F (Q,P ) analogously by inverting the
transformation. This is because F (Q,P ) = F (Q(q, p), P (q, p)). We now introduce a result on the
modified Hamiltonian.

Theorem 2.19 (Hairer, Lubich, Wanner 2006). Consider a generating function for a numerical
method Φh(q, p) given by

F (q, P, h) = hF1(q, P ) + h2F2(q, P ) + . . . (2.12)

where the functions Fi are defined on some domain D which is an open set. The modified Hamilton’s
equations are

q̇i =
∂H̃

∂pi
, ṗi =

−∂H̃

∂qi
.

where the modified Hamiltonian is

H̃(q, p) = H(q, p) + hH2(q, p) + h2H3(q, p) + . . . (2.13)

where if the method is order p, then Hi = 0 for i ≤ p. The Hi are defined and smooth on D.
Therefore, the closeness of the modified Hamiltonian to the original is O(hp).

If this domain D is the entire space of points q, P then this result is globally defined, but over
some restricted domain the result still holds but only locally. A proof is given in [13], but the result
features in both and [9] gives examples. The proof makes use of mixed-variable generating functions.
If we have a generating function F on (q, P ), then

Q =
∂F

∂P
(q, P ), p =

∂F

∂q
(q, P ).

Furthermore, the proof requires a particular kind of generating function, being the function F̃
obtained from the solution of the Hamilton-Jacobi partial differential equation

∂F̃

∂t
(q, P, t) = H̃

(
P, q +

∂F̃

∂P
(q, P, t)

)

with initial condition S̃(q, P, 0) = 0. This detail is necessary, and more detail is given in [13]. We
now consider the proof for this result.

Proof. Let P,Q be the coordinates for the exact solution of the modified equation defined by the
perturbed Hamiltonian H̃. We first want a generating function F̃ (q, P, t) defining the coordinate
transformation. It is given (in the text) that if F̃ is a solution to the Hamilton-Jacobi PDE, then it
is a unique solution which defines the map

Q = q +
∂F̃

∂P
(q, P, t), p = P +

∂F̃

∂q
(q, P, t).
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This is an expression involving t, and our numerical method is developed using the parameter h.
We want F̃ here to match the expression F (q, P, h) given in the statement of the theorem at t = h.
We can start by considering F̃ as a series expansion around t = h, which will take the form

F̃ (q, P, t) = tF̃1(q, P, h) + t2F̃2(q, P, h) + . . .

If we plug this into the Hamilton-Jacobi PDE, we can compare powers of t to obtain expressions
for the terms in the series. The results come out by Taylor expansion in one dimension since H̃
evaluates at P . The first few terms are

F̃1(q, P, h) = H̃(q, P )

2F̃2(q, P, h) =
∂H̃

∂q
(q, P, h) · ∂F̃1

∂P
(q, P, h)

. . .

(2.14)

The notation on the arguments is not important since these are just functions, but we stick with
(q, P ) for consistency. We have expressions for F̃j in terms of derivatives of H̃, and we also have an

expression for H̃ about H in powers of h. If we let F̃j be another series of the form

F̃j(q, P, h) = F̃j1(q, P ) + hF̃j2(q, P ) + h2F̃j3(q, P ) + . . .

then we can use this expansion, and the expansion of H̃ in Equation 2.13, both in powers of h, and
match coefficients by plugging the terms into the entries in Equation 2.14. Trivially, F̃1k(q, P ) =
Hk(q, P ) from the first entry, so we have the original Hamiltonian plus a series in powers of h. For
j = 2, we get terms such as

2F̃21(q, P ) =
∂H

∂q
(q, P ) · ∂H

∂P
(q, P )

2F̃22(q, P ) =
∂H2

∂q
(q, P ) · ∂H

∂P
(q, P ) +

∂H

∂q
(q, P ) · ∂H2

∂q
(q, P )

. . .

In general for j > 1 we have that F̃jk(q, P ) is a function depending on derivatives of Hl for l ≤ k2.
Finally, recall the purpose of the generating function. The function F (q, P ) defines the numerical
method. Therefore F̃ (q, P, h) needs to match F (q, P, h) as defined in Equation 2.12. We get the
requirements

F1(q, P ) = F̃11(q, P )

F2(q, P ) = F̃12(q, P ) + F̃21(q, P )

. . .

from comparing coefficients of h. Recall that we have F̃1k(q, P ) = Hk(q, P ) from the first row of
Equation 2.14. Therefore, the generating expression is a perturbation from the original Hamiltonian
and we have

Fj(q, P ) = Hj(q, P ) +Dj(Hk(q, P ))

where Dj is some function of derivatives of Hk for k ≤ j. This expression allows us to determine
the Hj given a generating function.

2The book states l < k, however equality is attained, for example F̃22 involves derivatives of H2.
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Figure 2.4: Integration of the three-body problem for a timespan t ∈ [0, 20]. Initial conditions are
configured to construct an orbit. Two masses orbit a stationary third mass at the origin. Initial
conditions on the y = 0 line at (1, 0), (0, 0) and (−1, 0). Initial momentum is rotationally symmetric,
approximately (0.35, 0.53) at (1, 0).

Recall the definition of the generating function from Equation 2.11. Assume that the numerical
method defined by the generating function F is O(hr). This generating function F itself is the
same order. Since we match terms in F and F̃ , both are O(hr) i.e. the highest order term is hr+1.
Therefore, we must have that F̃jk = Hk = 0 for k ≤ r.

Furthermore, since the Fj are defined in terms of Hj , they must be defined on the same domain
D.

The direct implication is that a higher order method will converge faster to the true qualitative
behaviour. Figure 2.3 shows the phonation problem from earlier. We evaluate the Hamiltonian using
its closed form expression using the numerical solution generated by the Störmer-Verlet scheme. As
we can see, the perturbed Hamiltonian approaches the unmodified Hamiltonian by O(h2), the order
of the method.

2.5 Applications

2.5.1 Example - The Three-Body Problem

The three-body problem [27] is a huge point of interest in celestial mechanics. It describes the
motion of three point-masses in a closed system which move under gravitational acceleration to each
other. An important subclass is the restricted three-body problem, in which one mass is relatively
large in magnitude, and can be regarded as fixed compared to the other two bodies. The restricted
three-body problem can be used to model the motion of the earth and moon relative to the sun.
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The classical form of the dynamics for the three-body problem is

ẍ1 = −Gm2
x1 − x2

|x1 − x2|3
−−Gm3

x1 − x3

|x1 − x3|3

ẍ2 = −Gm3
x2 − x3

|x2 − x3|3
−−Gm1

x2 − x1

|x2 − x1|3

ẍ3 = −Gm1
x3 − x1

|x3 − x1|3
−−Gm2

x3 − x2

|x3 − x2|3

where xi is the vector position of the point-mass particle with mass mi. In Hamiltonian form [27],
this is the problem

q̇i =
∂H

∂pi
, ṗi =

−∂H

∂qi
.

where

H(q, p) = −Gm1m2

|q1 − q2|
− Gm2m3

|q2 − q3|
− Gm3m1

|q3 − q1|
+

p21
2m1

+
p22
2m2

+
p23
2m3

.

for particles with position qi and momentum pi.
See Figure 2.4 for a visualisation of the trajectories of the three body problem under a particular

set of initial conditions. The integration from ode45() shows clear drift from the original path of the
orbit. A very high relative tolerance of 10−12 was used for this method, so this is arguably the best
approximation we can hope to compute with an explicit method. In comparison, the Störmer-Verlet
scheme is only second order accurate, but we are able to maintain the path of orbit over the same
timespan because it is a symplectic method. Any deviation from the orbit path is not visible.

See Appendix B.2.1 for implementations and tests of symplectic integration schemes.

2.5.2 Review

We have given an overview of the structure of problems in Hamiltonian mechanics and how the
property of symplecticity is directly related. We have introduced several symplectic integration
methods and the theory behind them. We have demonstrated these with examples to show the
utility of these methods. It is clear that when the nature of the Hamiltonian is important to the
behaviour of the problem, it would be beneficial to use a symplectic method.

Symplectic integration is extremely prevalent in celestial mechanics, where we may need to
integrate a Hamiltonian system over a long timespan in order to estimate the motion of celestial
bodies far into the future. The three-body problem is a simple but insightful demonstration of
problems such as these. Other applications in physics are molecular dynamics and particle physics.

Having covered symplectic integration, the theory for which is extremely prevalent and re-
searched, we now move on to the field of positivity preservation, which is a much more recent
and unclear area of geometric numerical integration.
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Chapter 3

Positivity Preservation

3.1 Positive Solutions to ODEs

3.1.1 Motivation

There are many problems which motivate the need for numerical methods which preserve positivity
of the solution. For example, consider the problem of simulating a chemical reaction. We start with
a finite amout of positive-valued species at the initial stage, and apply some numerical method to
produce a result. Despite being able to apply methods which have high orders of accuracy, traditional
methods will not preserve positivity unconditionally. If our numerical solution indicates that the
concentrations of any number of species become negative, then our solution is not qualitatively
accurate to a “true” solution.

Consider a problem given by ẋ = f(x), with the initial condition x(0) = x0. For a one-dimensional
problem, the true solution is positive if, given x0 ≥ 0, we have that x(t) ≥ 0 for t > 0. Positivity
of the numerical solution can be expressed as the condition that if xi ≥ 0 then xi+1 ≥ 0 for all
i = 1, . . . , N timesteps in the computation. Like always, x may be vector-valued. If x ∈ Rd, then

the condition for positivity of the numerical solution applies element-wise to each component x
(k)
i

for k = 1, . . . , d. Importantly, entries can be zero.
Methods which preserve positivity are a current area of research. It is difficult to produce

numerical methods which both preserve positivity and maintain high order accuracy. Moreover, it
is very difficult to formulate positivity preserving methods for general problems. Our approach will
be to consider particular cases, where we can reduce the problem ẋ = f(x) to a particular form, and
formulate positivity-preserving methods which are effective for these problems.

3.1.2 The Graph-Laplacian Matrix

Before looking at positivity-preserving methods, we will consider problems which themselves must
admit positivity-preserving solutions. The notion of the graph-Laplacian matrix and the methods
centered around it are taken from [4].

Our main focus will be on problems that we can write in the form

ẋ = A(x)x

where A is a graph-Laplacian matrix [4].
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Figure 3.1: A directed graph, given for the demonstration of a graph-Laplacian matrix, taken from
Wikipedia [1]. Nodes are indexed from 1 to 3 and each directed edge has a given weight. Each node
is connected to the other.

Definition 3.1. A graph-Laplacian matrix A ∈ Rd×d is a square matrix that satisfies

• 1⊺A = 0⊺ (its column sums are zero).

• For all i, j = 1, . . . , d where i ̸= j we have Aij ≥ 0.

• For all i = 1, . . . , d we have Aii ≤ 0

Note that here, A can depend on x. The entries in A(x) can contain entries of x in any fashion,
as long as the definition is satisfied.

The name “graph-Laplacian” comes from graph theory, and the definition is not universally
agreed upon. For our needs, we consider a graph-Laplacian matrix for a directional graph to be the
in-degree matrix (empty diagonal) minus the in-degree adjacency matrix (diagonal) of the graph.
Consider the graph given by Figure 3.1. The in-degree matrix D for this graph is

D =

9 0 0
0 8 0
0 0 7


where dii is the in-degree of vertex i and dij = 0 for i ̸= j. The adjacency matrix C is

C =

0 1 2
3 0 5
6 7 0


where cij is the weight of the edge from vertex i to vertex j. We define the Laplacian matrix A for
a graph by

A = C −D. (3.1)

We have covered this case for integers, however in general we will consider graph-Laplacian matrices
over real numbers. If a problem admits the reduction to graph-Laplacian form like the above, we
can show that the solution retains positivity.

Theorem 3.2 (Preservation of Positivity [4]). Solutions of ẋ = A(x)x retain positivity if A is
graph-Laplacian.
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Proof. Consider the solution x(t∗) at time t∗. Assume that there are indices k ∈ {1, . . . , d} where
all entries xk(t

∗) are zero and the rest are strictly positive. Then the k-th equation in the matrix
system is

ẋk(t
∗) =

d∑
l=1

Akl(x(t
∗))xl(t

∗).

Entry Akk is negative, but we assumed xk(t
∗) = 0 so the only contributions to the sum are the

Akl and xl for l ̸= k. Some of the xl may be zero but all the rest are positive, so we have ẋk ≥ 0.
Note that equality is attained if all the xk are zero which is the trivial solution. Assume instead
that every entry xk(t

∗) is non-zero and hence positive. In this case there are no restrictions on the
derivative of the k-th entry - the Akk term means this derivative can be negative. The xk term can
go to zero, but since the derivative is strictly non-negative at zero, we will retain positivity.

We have shown that the graph-Laplacian form is a suitable structure for problems where we are
concerned about positivity preservation. From now on, for a vector solution x ∈ Rd we will write
x ≥ 0 to mean that each element xk ≥ 0 for k = 1, . . . , d. Before moving on to numerical methods
that preserve positivity of these problems, we will consider a few points of note.

3.1.3 Non-autonomous Systems

Our analysis so far has focused on problems ẋ = A(x)x, which are autonomous. Examples in
positivity preservation can often be non-autonomous, which we would write as ẋ = A(x, t)x. The
particular details of problems involving the graph-Laplacian matrix can be easily analogised to the
non-autonomous case. As such, we will usually only consider problems in the autonomous form,
unless it is necessary to the analysis.

Some problems can involve several different timescales, in which case time-dependence is very
important to account for.

3.1.4 Conservation of Mass

When problems describe an exchange of matter, it is useful for this matter to be conserved in our
solution. First, let e be the vector of ones. Conservation of mass is the condition that x satisfies
e⊤x = C for some constant C. Mass is conserved for graph-Laplacian problems because

d

dt
e⊤x = e⊤ẋ = e⊤A(x)x = 0⊤x = 0

hence clearly e⊤x is constant. In the literature [4] we often have C = 1 for simplicity, there is no loss
of generality because this can be applied to some scaling of the initial condition such that e⊤x0 = 1.

Mass preservation can be generalised to higher order problems involving inner products with the
variable of interest. These problems concern conservation of other properties, which we will not
explore in depth.

3.2 Positivity Preserving Methods

3.2.1 Brute force approach

Before considering the problem of positivity preserving methods in depth, we will first consider
the method which we will refer to as “fixing” or “clipping”. We use the forward Euler method
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Figure 3.2: Comparison of methods applied to the linear test problem. True solution is marked in
blue on each plot.

xi+1 = xi + hf(xi), except at every step we perform a fix by considering every entry in xi and if it
is negative, we just set it to zero. We can write this formally as the method

xi+1 = xi + hf(xi)

xi+1 = H+(xi+1)

where H+ is the thresholder that sets all negative entries to zero. This is equivalent to a projection
of x to a vector subspace of lower dimension, determined by in which dimensions x is positive.

This method is very cheap, and it preserves positivity, so it seems like an easy choice. The fixing
step to eliminate negative entries can be applied in general to any numerical method. See Figure
3.2, where we have compared regular explicit Euler, explicit Euler with clipping, and implicit Euler
methods applied to the linear test problem. Regular Euler’s method fails to preserve positivity
unconditionally, while the clipping method adjusts negative solutions to zero. Backward Euler
appears to preserve positivity.

Euler’s method serves as a useful baseline to demonstrate experimental ideas. Being a first-order
accurate method, it does not serve as an effective choice for general applications. We will instead look
at different approaches to preserving positivity of the numerical solution, using the graph-Laplacian
structure explored earlier.

3.2.2 General Solutions

Consider the problem ẋ = Ax, with initial condition x(t = 0) = x0, with a constant square matrix
A. The general solution to this problem is

x(t) = etAx0

where the matrix exponential is analogised from the scalar case

eA = I +A+
1

2
A2 +

1

6
A3 + . . . =

∞∑
j=0

Aj

j!
.

We have shown that in the case where A is graph-Laplacian, solutions preserve positivity.
We can’t immediately apply this exponential solution to the problem ẋ = A(x)x because of the

non-linear right hand side, which will lead to a different expansion via. product rule. To see why,
we will demonstrate the expansion. Assume that the solution for the graph-Laplacian problem is
x(t) = exp(tA(x))x0. Then

ẋ =
d

dt

(
eA(x)tx0

)
=

d

dt
[A(x)t] eA(x)tx0 = [A(x) + tA′(x)A(x)x]x
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which does not satisfy the problem. Note that this expension involves a derivative of A(x). More
on this later.

3.2.3 Exponential Euler’s Method and Matrix-Vector Taylor Series

We said that we can’t apply the exponential solution x(t) = exp(tA)x0 to the problem ẋ = A(x)x.
We will show this by demonstrating what happens if we do. We propose a method of the form

xn+1 = ehA(xn)xn. (3.2)

This method fixes A for each step. Therefore, one step is equivalently providing the analytical
exponential solution to the problem ẋ = A(y)x, where y = x(t = 0) = xn. In our scope of
analysis we will call this the “exponential Euler method”, due to its similarity to the classic method.
Considering the true solution after a timestep, we want to find an expression for the truncation
error. We write x(tn) = xn at the current step and look at the difference between x(tn+h) (the true
value) and xn+1 (the method). However, first we need to consider the Taylor expansion on x(t+ h)

x(t+ h) = x(t) + hẋ(t) +
h2

2
ẍ(t) + . . .

which involves derivatives of the nonlinear vector function A(x)x

x(t+ h) = x+ hA(x)x+
h2

2

[
A′(x)A(x)xx+A(x)2x

]
+O(h3)

writing x = x(t). As we can see, this involves derivatives of A(x), and associativity of matrix
multiplication breaks. To clarify, multiplication following from left to right should always perform
defined operations. Derivatives of A(x) are rank-incrementing tensors: since A ∈ Rd×d, the first

derivative is A′(x) ∈ Rd×d×d. The k-th order derivative satisfies A(k)(x) ∈ Rdk+2

. This analysis is
essential for deriving the order of methods for problems of the form we are working with.

Evaluating the truncation error of the exponential Euler method gives us the expression

τ(h) = x(tn + h)− xn+1 = x(tn + h)− ehA(xn)xn

= x(tn) + hẋ(tn) +
h2

2
ẍ(tn) +O(⟨∋)− ehA(xn)xn

= xn + hA(xn)xn +
h2

2

(
A′(xn)A(xn)xnxn +A(xn)

2xn

)
+O(h3)

−
(
I + hA(xn) +

h2

2
A(xn)

2 +O(h3)

)
xn

=
h2

2
(A′(xn)A(xn)xnxn) +O(h3)

hence the exponential Euler method is first order accurate.

3.2.4 The Second-Order Strang Splitting Method

The exponential Euler method involved considering the problem with one fixed component in order
to apply the exponential solution. We will consider the separation of components in more depth as
in [4] so that we can justify the construction of higher order methods.
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We have the problem ẋ = A(x)x. Introduce the variable z where the initial conditions for x and
z satisfy x(t = 0) = x0 = z0 = z(t = 0). We then write the problem in two parts as

ẋ = A(z)x

ż = A(x)z.

By separating the problem into two, we are essentially solving the problem twice. However, the way
we have distributed x and z means we can decompose this into two separate problems where we
solve one for x and one for z. The first problem is

ẋ = A(z)x

ż = 0
(3.3)

which has solution

x(t) = etA(z0)x0

z(t) = z0

while the second problem is of alternate form for x and z

ẋ = 0

ż = A(x)z
(3.4)

which has solution

x(t) = x0

z(t) = etA(x0)z0.

It may appear confusing as to why we split the problem into two parts. We know that if a problem
is given by ẋ = A(x)x then its solutions preserve positivity. We also know that if a problem is given
instead by ẋ = Ax for any constant matrix A, then it has general solution given by x(t) = exp(tA)x0.
Therefore, by splitting the problem into two problems on x and z, the solutions are given by the
exponential form since the matrices are fixed in each problem, and the solutions preserve positivity
because the matrices are of graph-Laplacian form. Therefore these solutions preserve positivity [4],
which we can use to begin constructing methods which maintain this.

The primary method given in [4], which is a solution to Equations 3.3 and 3.4 is given by the
equations

xn+ 1
2
= exp

(
h

2
A(zn)

)
xn

zn+1 = exp
(
hA(xn+ 1

2
)
)
zn

xn+1 = exp

(
h

2
A(zn+1)

)
xn+ 1

2
.

(3.5)

The solution xn, zn or (xn+zn)/2 is second order accurate. We perform a half step in x, followed by
a full step in z and then a second half-step in x, similar to Verlet integration. In [4], it is stated that
|xn − zn| can be used as an estimate of the truncation error, for the method to be used adaptively
with a variable time step.

We will provide our own analysis on this method, by producing our own results on the truncation
error of these methods. First, we evaluate the truncation error of z. The whole numerical method can
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be written compactly by writing the explicit expression for xn+ 1
2
inside the term. Denote x := x(tn)

and A := A(x) for compactness, also A′ := A′(x) and the same generalised for any derivatives. For
an attempt of ease of notation, square brackets contain objects which are matrices or higher rank
tensors, while parentheses contain objects which are vectors. We can begin by writing the stage
directly as

zn+1 = exp

[
hA

(
exp

(
h

2
A(zn)

)
xn

)]
zn

and we note that xn = zn = x(tn), so we can swap every z + n for x. In full,

zn+1 = exp

[
hA

(
exp

(
h

2
A(x)

)
x

)]
x. (3.6)

Now start evaluating the truncation error.

x(tn + h)− zn+1 = x(tn + h)− exp

[
hA

(
exp

[
h

2
A

]
x

)]
x

= x(tn + h)−
[
I + h

[
A

(
exp

[
h

2
A

]
x

)]
+

h2

2

[
A

(
exp

[
h

2
A

]
x

)]2
+

h3

6

[
A

(
exp

[
h

2
A

]
x

)]3]
x+O(h4).

The inner term needs to be expanded out

A

(
exp

[
h

2
A

]
x

)
= A

([
I +

h

2
A+

h2

8
A2

]
x

)
+O(h3)

= A

(
x+

h

2
Ax+

h2

8
A2x

)
+O(h3)

= A+A′ ·
(
h

2
Ax+

h2

8
A2x

)
+A′′(x)

(
h2

8
AxAx

)
+O(h3)

= A+
h

2
A′Ax+

h2

8

(
A′A2x+A′′AxAx

)
+O(h3).

Note that an internal expansion leads to a big-O term inside the brackets, which we can take outside
the brackets by Taylor expansion centred at the collection of terms before the big-O expression. If
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we plug this back in, the terms expand as

x(tn + h)−
[
I + h

[
A+

h

2
A′Ax+

h2

8

[
A′A2x+A′′AxAx

]]
+

h2

2

[
A+

h

2
A′Ax

] [
A+

h

2
A′Ax

]
+

h3

6
A3

]
x+O(h4)

= x(tn + h)−
[
I + hA+

h2

2

[
A′Ax+A2

]
+

h3

8

[
A′A2x+A′′AxAx+ 2A′AxA+ 2AA′Ax+

4

3
A3

]]
x+O(h4)

= x(tn + h)−
(
x+ hAx+

h2

2

(
A′Axx+A2x

)
+

h3

8

(
A′A2xx+A′′AxAxx+ 2A′AxAx+ 2AA′Axx+

4

3
A3x

))
+O(h4).

We can evaluate the Taylor expansion for x itself

x(tn + h) = x+ hẋ+
h2

2
ẍ+

h3

6

...
x +O(h4)

= x+ hAx+
h2

2

(
A′Axx+A2x

)
+

h3

6

(
A′′AxAxx+A′A′Axxx+ 2A′A2xx+AA′Axx+A3x

)
+O(h4).

(3.7)

Written on its own, the expansion of zn+1 is

zn+1 = x+ hAx+
h2

2

(
A′Axx+A2x

)
+

h3

8

(
A′A2xx+A′′AxAxx+ 2A′AxAx+ 2AA′Axx+

4

3
A3x

)
+O(h4)

(3.8)

By comparing terms, the truncation error of the z component is

τz(h) = h3

(
1

24
A′′AxAxx+

1

6
A′A′Axxx+

5

24
A′A2xx− 1

12
AA′Axx− 1

4
A′AxAx

)
+O(h4). (3.9)

Now look at the truncation error provided by the x part of the method. We already have, from
above, an expression for zn+1 in terms of powers of h, which will make the evaluation easier. Write
the expression for xn+1

xn+1 = exp

[
h

2
A(zn+1)

]
xn+ 1

2

which is equivalently

xn+1 = exp

[
h

2
A(zn+1)

]
exp

[
h

2
A

]
x. (3.10)
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Expand the expression

xn+1 = exp

[
h

2
A

(
x+ hAx+

h2

2

(
A′Axx+A2x

)
+O(h3)

)]
exp

[
h

2
A

]
x

= exp

[
h

2
A+

h

2
A′ ·

(
hAx+

h2

2

(
A′Axx+A2x

))]
exp

[
h

2
A

]
x+O(h4)

= exp

[
h

2
A+

h2

2
A′Ax+

h3

4

[
A′A′Axx+A′A2x

]]
exp

[
h

2
A

]
x+O(h4).

Note that because of the (h/2) scale, taking out the O(h3) term by expansion leads to an O(h4)
term outside the expression. This saves writing zn+1 up to the order h3 term, since it would not be
included in the final expression up to order O(h3). Using the definition of the exponential for both
parts, we get

xn+1 =

[
I +

[
h

2
A+

h2

2
A′Ax+

h3

4

[
A′A′Axx+A′A2x

]]
+

1

2

[
h2

4
A2 +

h3

4
[AA′Ax+A′AxA]

]
+

1

6

[
h3

8
A3

]]
×
[
I +

h

2
A+

h2

8
A2 +

h3

48
A3

]
x+O(h4).

We have only included every term up to third order, and then taken all higher order terms outside
of the expansions. We can rearrange this into powers of h to get

xn+1 =

[
I +

h

2
A+

h2

8

[
4A′Ax+A2

]
+

h3

48

[
12A′A′Axx+ 12A′A2x+ 6AA′Ax+ 6A′AxA+A3

]]
×
[
I +

h

2
A+

h2

8
A2 +

h3

48
A3

]
x+O(h4).

Multiplying this expression, considering only terms up to third order, we get

xn+1 =

[
I + hA+

h2

8

[
4A′Ax+ 4A2

]
+

h3

48

[
12A′A′Axx+ 12A′A2x+ 6AA′Ax+ 6A′AxA+ 2A3

]
+

h3

16

[
4A′AxA+ 2A3

]]
x

+O(h4).

By collecting terms, simplifying, and multiplying through by x, we get the expression

xn+1 = x+ hAx+
h2

2

(
A′Axx+A2x

)
+

h3

8

(
2A′A′Axxx+ 2A′A2xx+AA′Axx+ 3A′AxAx+

4

3
A3x

)
+O(h4)

(3.11)
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Comparing this to the true expansion from Equation 3.7, we can evaluate the truncation error
x(tn + h)− xn+1 as

τx(h) = h3

(
1

6
A′′AxAxx− 1

12
A′A′Axxx+

1

12
A′A2xx+

1

24
AA′Axx− 3

8
AA′Axx

)
+O(h4). (3.12)

We have obtained direct expressions for the truncation errors for both components of the splitting
method. Both expressions for truncation error, from Equations 3.9 and 3.12, indicate that the
method is second-order accurate.

The multiplication of the tensors as we have written them is not defined to satisfy associativity.
With the aim of relating the notation of Butcher [8], we evaluate terms in the derivatives to provide
some clarity. We start with the definition of the system

ẋ = f(x) = A(x)x

We consider derivatives in the general case:

ẋ = f(x)

ẍ = f ′(x)ẋ = f ′(x)f(x) = f ′f
...
x = f ′′(x)f(x)f(x) + f ′(x)f ′(x)f(x) = f ′′(f, f) + f ′f ′f

We can express terms for the derivatives just in f , which only go down to x derivatives

f(x) = A(x)x = Ax

f ′(x) =
∂f

∂x
=

∂

∂x
(A(x)x) = A′(x)x+A(x) = A′x+A

f ′′(x) =
∂

∂x
(A′(x)x+A(x)) = A′′(x)x+A′(x) +A′(x) = A′′x+ 2A′

and we can write the derivatives of x in a way that resembles the convention

ẋ = f = Ax

ẍ = f ′f = [A′x+A] (Ax)
...
x = f ′′(f, f) + f ′f ′f = [A′′x+ 2A′] (Ax,Ax) + [A′x+A] [A′x+A] (Ax)

where A′′x+ 2A′ is a third rank tensor, A′x+A is a matrix and Ax is a vector.
We will now briefly consider statements from [4] regarding the properties of the splitting method.

We have mentioned the authors’ claim that the difference |xn+1− zn+1| can be taken as an estimate
of the error of the method. Using the expansions in Equations 3.8 and 3.8, we can write their
difference as

zn+1 − xn+1 =
h3

8

(
A′′AxAxx+AA′Axx−A′A2xx−A′AxAx− 2A′A′Axx

)
+O(h4). (3.13)

This expression on the difference between methods contains every expression in the truncation error
for z (Equation 3.9), of which there are five. This may motivate its use as an estimate of the error.
However on comparing the two, there is a difference of sign for three expressions, and no consistency
of scaling. The difference expression does not contain the term AA′Axx, which appears in the
truncation error for x.

One potentially interesting component of this analysis comes from how the different stages elim-
inate different elements in the truncation errors. We may be motivated to take a linear combination
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Figure 3.3: Test problem on the system given by Equation 3.14. The left figure uses the ”ES2”
method given by Equation 3.5 taking its x values as opposed to the z values. ES2 preserves positivity
of the solution throughout. The right figure uses MATLAB’s ode45() integrator, with a reduced
tolerance in order to break positivity. The values used were a = 0 with initial condition x0 = 0,
y0 = 1 running for a timespan up to T = 100. Confusingly the MATLAB graph indexes the
horizontal axis X and the vertical Y , whereas we plot x and y on the vertical axis against t. The
point labels are necessary to indicate that the MATLAB integrator does not preserve positivity.

of xn+1 and zn+1 such that we can obtain a new truncation error which is, in some sense, minimised.
Arguments are given in the Appendix, since the method borrows from convex optimisation [6] and is
not entirely relevant to the discussion. Particularly, the approach is similar to Ralston [28]. We find
that the appropriate linear combination, of the form yn+1 = µzn+1 + λxn+1, would be theoretically
best for µ = 17/24, λ = 7/24.

The author acknowledges that the majority of this analysis on the truncation error of the splitting
method is limited, and there is a lack of clarity regarding the evaluation of the terms which appear
in the Taylor expansions. Improvements to the results could be made, however we have decided to
leave this analysis as it stands in the case of diminishing returns. The analysis is the best we could
achieve in this regard.

3.2.5 Example - A Linear Problem on Two Variables

Consider the system given by
dx

dt
= y − ax,

dy

dt
= ax− y (3.14)

where a is a given constant. This problem is explored briefly for demonstrative purposes in [7]. The
problem admits formulation into the graph-Laplacian form

d

dt

(
x
y

)
=

[
−a 1
a −1

](
x
y

)
where the matrix is constant.

A numerical solution is given in Figure 3.3. We show that a conventional explicit method, such
as the Runge-Kutta method(s) applied in MATLAB’s ode45() integrator does not unconditionally
preserve positivity. The formulation of the problem into graph-Laplacian form and the application of
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a nonnegative initial condition indicates that our solution should preserve positivity, but MATLAB’s
integrator does not maintain this. Therefore we have shown that positivity may not be maintained by
conventional integrators, but it is succesful for the ES2 integrator which we know to unconditionally
preserve positivity.

Implementation of ES2 with further testing is provided in Appendix B.3.1.

3.2.6 The Magnus Integrator

An alternative method suggested in [4] is the second order Magnus integrator. We will first discuss
the Magnus expansion [23, 3], which allows us to construct this method. The Magnus expansion
considers the linear ODE given by

ẋ = A(t)x

with initial condition x(t = 0) = x0. Since A is not time-independent, the exponential solution we
have discussed earlier does not hold. We state that the problem is linear, but the time dependence
analogises to the cases we have looked at for a matrix A(x) or A(t, x). The Magnus expansion
considers the solution of this problem to be of the form

x(t) = exp(Ω(t))x0

for some matrix function Ω(t) which can be expressed in terms of the governing matrix A. We write
Ω(t) as an infinite sum over Ωj(t) functions. From the literature [3], we have formulae for these
entries. Specifically, we write

Ω(t) = Ω1(t) + Ω2(t) + . . . =

∞∑
j=0

Ωj(t)

Ω1(t) =

∫ t

0

A(τ)dτ

Ωn(t) =

n−1∑
k=1

Bk

k!

∫ t

0

S(k)
n (τ)dτ

where Bk are the Bernoulli numbers [2] and the S
(j)
n matrices are defined

S(1)
n = [Ωn−1, A]

S(n−1)
n = adn−1

Ω1
(A)

S(j)
n =

n−j∑
m=1

[
Ωm, S

(j−1)
n−m

]
for 2 ≤ j ≤ n− 1.

where [·, ·] is the matrix commutator [A,B] = AB−BA and adjA B = [A, ad
(j−1)
A B] where ad0A B =

B. For clarity, the matrix integral is defined element-wise since t is a scalar. We truncate the
Magnus expansion to attain an approximation of the solution to a particular order. Taking just the
first term Ω1, we obtain

x(t) = exp

(∫ t

0

A(τ)dτ

)
x0

which we can approximate with a first order method to get

xn+1 = exp (hA(tn))xn.
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Note that we are given A = A(t) in the definition of the Magnus expansion, while problems we are
interested in have A = A(x) or A = A(x, t). The use of the Magnus expansion is in being able to
express the solution to the time-dependent matrix ODE as something computable. By taking the
first order term in the expansion and forming a first order approximation, we construct a first-order
method which is the same as the “exponential Euler method” we saw earlier. This outlines an idea
for constructing better approximations, by taking higher order Magnus expansions and higher order
approximations.

In [4], the second order Magnus solution is given by

x(t) = exp

[∫ t

0

A
(
eτA(x0)x0

)
dτ

]
x0

for a problem with initial condition x(t = 0) = x0. We can swap x0 for xn and this provides the
Magnus solution to second order at tn + h, which we then approximate to produce a numerical
method. Using the trapezium method by evaluating the integrand at both ends and taking the
midpoint, we obtain the method

xn+1 = exp

[
h

2
[A(xn) +A (exp [hA(xn)]xn)]

]
xn.

Alternatively, using the midpoint rule the method is given by

xn+1 = exp

[
hA

(
exp

[
1

2
hA(xn)

]
xn

)]
xn. (3.15)

We will consider the second order Magnus integrator as the approximation using the midpoint rule,
which is the same options taken by the authors of [4]. The authors also provide more detail on the
formulation for higher order methods. Both the trapezium and midpoint rule approximations are
second-order accurate. More properties of the Magnus expansion are explored in [3].

The formulation of the second-order Magnus integrator (midpoint) is identical to the zn+1 stage
of the second order Strang splitting method for one step [4]. See Equation 3.6 for the definition with
Taylor-expanded form in Equation 3.8. See Equation 3.9 for the truncation error.

3.2.7 Example - The MAPK Cascade

The Mitogen-activated protein kinase (MAPK) cascade model is an autonomous system on six
variables, given in the form of ẋ = A(x)x, where A is given by

A(x) =


−k7 − k1x2 0 0 k2 0 k6

0 −k1x1 k5 0 0 0
0 0 −k3x1 − k5 k2 k4 0

(1− α)k1x2 αk1x1 0 −k2 0 0
0 0 k3x1 0 −k4 0
k7 0 0 0 0 −k6

 .

The problem describes the behaviour of different chemical species involved in a biochemical reaction
involving enzymes at a microcellular level [11]. The form of this problem is taken from [4], which itself
is modified from the properties discussed in [11]. The coefficients kj are given as k1 = 100/3, k2 =
1/3, k3 = 50, k4 = 1/2, k5 = 10/3, k6 = 1/10, k7 = 7/10. Note that the values involving the term
α show that this graph does not admit graph-Laplacian structure as we have defined. For α = 1,
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Figure 3.4: Graphic of the trajectories given by the MAPK cascade problem. The Runge-Kutta
method applied by ode45() has a relative tolerance set to 10−12 which is extremely accurate. This
gives us our best feasible approximation, to compare other methods to. This is shown in the left
figure. The figure on the right shows the solution computed using the EM2 Magnus integrator, with
a uniform step size of h = 0.1. The variables xi are the concentrations of different chemical species
involved in the reaction.

the first column sum is zero but the second is not, and for α = 0 the opposite is true. Furthermore
the fourth column sum is never zero since we have defined k2 to be non-zero. This is addressed by
[4], and we state that this problem adheres to the requirements of positivity preservation as long as
α ∈ [0, 1]. On inspection, this is the condition to require positivity of the entries involving α, which
themselves are not on the diagonal. Hence this criteria is sufficient to guarantee positivity by the
Theorem we stated earlier. We take α = 0.1 for our computations, acknowledging that any value in
[0, 1] is suitable.

The MAPK cascade is an autonomous system which developes a sustained oscillation cycle. See
Figure 3.4 for a visualisation of the behaviour of the system. We consider the EM2 integration
method for solving this problem, with a time step of h = 0.1. We compare this with the output
provided by MATLAB’s ode45(), using a very low relative tolerance, which we consider the “exact”
solution in a sense that we cannot obtain a better approximation. The behaviours of both are
extremely similar, however the implementation of EM2 has a recogniseable error, which we can
most easily notice when the paths of the values intersect. We can also make the assertion that
EM2 preserves positivity for this problem, by inspection of the graph. This result is consistent if we
extend the timespan of the solution.

Implementation of positivity preserving methods for this problem are provided in Appendix B.3.3

3.3 Approximation of the Matrix Exponential

This section involves some linear algebra material which we have not covered. A summary of the
required information is given in the Appendix if needed.
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3.3.1 Challenges, series computation

The positivity preservation methods discussed so far all have one problem in common, being the use
of the matrix exponential. Computing the matrix exponential is significantly expensive, so we hope
to introduce some form of approximation by which we can retain a given order of a method. We
might first think to compute the exponential directly from the definition [16]:

eA = I +A+
1

2
A2 +

1

6
A3 + . . . =

∞∑
j=0

Aj

j!
.

If we are working in finite precision floating point arithmetic, we can assume that at some point the
series will converge such that the sums to n and n+1 are represented exactly the same [26]. In this
case, we take the sum to n

eA ≈
n∑

j=0

Aj

j!
.

and using a modified Horner’s form [22] we can express this as

n∑
j=0

Aj

j!
= I +A+

1

2!
A2 + . . .+

1

n!
An

= I +A

(
I +

1

2
A

(
I + . . .

(
. . .

(
I +

1

n
A

))))
.

There are n matrix additions, n−1 divisions of a matrix by a scalar and n−1 matrix multiplications
required to compute this expression. A multiplication of two d× d matrices requires O(d3)1 floating
point operations. Even with this improvement in efficiency, using this approach to compute a matrix
exponential appears expensive. We will now show that it is also unstable.

The following example is an adjustment of the first demonstration from [26]. Consider the matrix
given by

A =

[
−121 60
−160 79

]
.

Computing the series form of the exponential directly in double-precision arithmetic sums toN = 139
terms, and gives us the solution

eAs =

[
−2.6531 −97.1835
−61.9581 −184.0359

]
.

The true form of A can be written as a conjugate transformation

A =

[
1 3
2 4

] [
−1 0
0 −41

] [
1 3
2 4

]−1

.

and so the exponential can be written as

eA =

[
1 3
2 4

] [
e−1 0
0 e−41

] [
1 3
2 4

]−1

≈
[
−0.7358 0.5518
−1.4715 1.1036

]
.

Clearly the exponential computed via series approximation is not an adequate estimate.
Since this implementation is clearly inadequate, we look for alternative methods for computing

the matrix exponential.

1For computer algebra operations, a lower order is better because we often deal with large problems. In comparison,
we want numerical methods to have higher order because h is often very small.
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Figure 3.5: A Monte-Carlo estimate to evaluate the error of the Padé approximation of the matrix
exponential. For each value of s in the interval [0, 2], we generate a sample of random 10×10 graph-
Laplacian matrix and positive vector pairs with entries uniformly distributed on [0, 1], then evaluate
the 2-norm error between exp(A)x using the MATLAB expm() function, and the Padé approximation
Q−1Px. However, we use the decomposition A = Ā+ âI and define â = −s|max(aii)|. We use the
Padé method to estimate exp(Ā) where its diagonal is modified from A depending on s. If s ≥ 1
then Ā is entirely nonnegative, whereas if s < 1 then there is at least one negative entry on the
diagonal of Ā. This figure shows that there is an interval of values for s such that it is unsuitable to
take the Padé approximation of Ā. The rough shape of the curve could come from the randomness
of the sample matrices and vectors themselves.

3.3.2 The Padé Approximation, Scaling and Squaring

Recall the Padé approximation to the matrix exponential, which we explored when looking at sym-
plectic and A-stable Runge-Kutta methods in Chapter 2. We generalise this concept to functions
on matrices. Given a function f(A), there is a unique [n,m] Padé approximant [16] Rmn(A) given

by the pair Pnm(A), Qnm(A) and formed by Rnm(A) = [Qnm(A)]
−1

Pnm(A). We will refer to P as
the numerator matrix and Q−1 as the denominator matrix. Formulae for Padé approximants for
certain matrix functions are known, such as the exponential. When computing the product Q−1P
we always use a method to solve the system QX = P rather than directly computing the inverse
and product.

We said that formulae for the Padé approximation for the exponential are known. From [26, 16]
again, we have

Pnm(A) =

n∑
j=0

(n+m− j)!n!

(n+m)!j!(n− j)!
Aj

Qnm(A) =

m∑
j=0

(n+m− j)!m!

(n+m)!j!(m = j)!
(−A)j .

(3.16)

This is the approximant at zero. A general Padé approximant is taken about a point, such that it is
equal to the approximated function at that point, similar to a Taylor expansion. In some cases we
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Figure 3.6: Monte-Carlo estimate for the negativity of the Padé approximation of exp(A)x. Uses the
same configuration as Figure 3.5, the only difference being the evaluation of the dependent variable.
We can identify a region of small s for which the approximation appears suitable for preserving
positivity. Not indentifiable from the previous figure is the slow descent as s increases, implying
that these values are not suitable despite showing low error before. The improved smoothness of
this curve could imply that the behaviour of the negativity is inherent to the approximation.

might take the approximant about a different point, but here zero is no less suitable than anywhere
else.

In [4] it is stated that the second order diagonal Padé approximation to the exponential is posi-
tivity preserving. This is not true and we will provide a counterexample, alongside an investigation
regarding how the approximation can be adjusted to preserve positivity. The [1, 1] Padé approxi-
mation to the exponential of A is

D11(A) =

[
I − 1

2
A

]−1 [
I +

1

2
A

]
.

Consider the matrix given by

A =

−4 1 0
2 −1 2
2 0 −2


and vector

x =

31
2

 .

Clearly A is graph-Laplacian and x is positive. To four significant figures the product of the expo-
nential with the vector is

eAx =

0.9422
3.8506
1.2071

 (3.17)
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so positivity is preserved. However if we compute the [1, 1] Padé approximant and compute the
product we obtain

[D11(A)]x =

[
I − 1

2
A

]−1 [
I +

1

2
A

]
x =

−0.0167
1.1500
0.3667


where we fail to preserve positivity. A method is proposed in which we exploit the properties of the
exponential by writing A = Ā+ âI, such that Ā is entirely nonnegative. Then

eA = eĀ+âI = eâeĀ

and we compute the [1, 1] Padé approximant for Ā. In our example â = −4 and

eâ[D11(Ā)]x =

 0.5833
1.7500
−0.8333

 .

So clearly the second order Padé method does not preserve positivity.
There is one result which we can utilise in order to ensure positivity.

Lemma 3.3 (Series Inverse [18]). If A is a matrix which satisfies ||A||2 < 1, assuming I − A is
invertible we can write the inverse of [I −A] as

[I −A]
−1

=

∞∑
k=0

Ak.

Proof. The condition on the norm ||A||2 < 1 is required in order for the series to converge. Define
the series up to N by UN :

UN :=

N∑
k=0

Ak.

Then multiply [I −A] by this series

UN [I −A] =
[
I +A+A2 + . . .+AN−1 +AN

]
[I −A]

= [I −A] +
[
A−A2

]
+ . . .+

[
AN−1 −AN

]
+
[
AN −AN+1

]
= I + [A−A] +

[
A2 −A2

]
+ . . .+

[
AN −AN

]
−AN+1

= I −AN+1.

As N → ∞, AN tends to the zero matrix because ||A||2 < 1 as assumed. Hence this product
converges to the identity and we have an expression for the inverse. Thus,

[I −A]
−1

= lim
N→∞

UN =

∞∑
k=0

Ak.

This result is especially useful when considering the reduction A = Ā+ âI. We have Ā is entirely
positive by definition. If we also have this bound on the spectral norm of Ā, then we know that
the inverse of [I − Ā] is the series on powers of A, all of which must be positive. Therefore, the
inverse of [I − Ā] is positive. In this context, we can guarantee that this approximation is positivity
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preserving. This also relates to the Padé approximation - if this holds then the [1, 1] approximation
has the numerator and denominator matrices both positive. We will look at this later.

A possible explanation for the mistake in [4] could be the alternative approximations the authors
use. Considering the step h, the diagonal Padé approximation is the product of two matrices

ehA ≈
[
I − h

2
A

]−1 [
I +

h

2
A

]
.

The following will appear confusing due to the scaling of h/2 in both matrices, which is necessary
to the Padé approximation of exp(hA). However all the comments are identical up to scaling.

We can guarantee positivity of the Padé approximation if both the numerator and denominator
matrices are entirely positive. The denominator matrix is itself a first order approximation to
the matrix exponential exp((h/2)A) and is in fact guaranteed to be positive (more on this later).
However the numerator matrix has no guarantee of positivity: if â is the entry in A of maximum
absolute value, then this matrix has at least one negative entry for h > 2/|â|. For the example we
have given, â = −4 by inspection. Alternatively, recall A = Ā + âI and consider the second order
approximation involving only Ā. This is the same as exp(A) up to scaling, as shown earlier. Since
Ā is entirely nonnegative the numerator matrix must be nonnegative. However this time there is no
condition on the positivity of the denominator matrix. We can give an informal proof: assume Ā is
entirely positive, with at least one zero on the diagonal. Then consider I−hĀ. This has at least one
positive entry on the diagonal, but only has entirely positive diagonal for h less than (max(āii))

−1.
Entries in I − hĀ not on the diagonal will be negative. Assuming the bound is not satisfied, there
will be one row in I − hĀ which is entirely negative. For example,

I − hĀ =

1 − −
− − −
− − ?

 .

The ‘?’ entry cannot be greater than 1, it is only included for generality. Now assume its inverse
is entirely positive. This is the denominator matrix, so we are hoping this is true. Consider their
product: [

I − hĀ
] [
I − hĀ

]−1
=

1 − −
− − −
− − ?

+ + +
+ + +
+ + +


Consider their product. Because this is the product of a matrix and its inverse, it should form the
identity matrix. However we assumed that the i-th row in [I − hĀ] is negative, and the i-th column
in its inverse is positive (because we assumed the whole matrix is positive). Therefore the entry ii of
their product, which is the identity matrix, is either zero or negative. This is a contradiction since
entry ii of the identity matrix is 1. Therefore it is not guaranteed that [I − hĀ] to be positive.

The explanation for the error could lie in both approximations. If we are approximating exphA,
then the denominator matrix is entirely positive, but we cannot say the same for the numerator. If
we instead use the decomposition A = Ā + âI and take the exponenial of Ā, then the numerator
matrix is guaranteed to be positive but the denominator may be negative.

See Figure 3.5 for a visualisation of the stability of computing the Padé approximation. By using
different values of â in the decomposition A = Ā+ âI for the reduction exp(A) = exp(â) exp(Ā), the
diagonal of Ā may or may not have negative values. Particularly, we define â = −s|max(aii)| using
a positive scaling parameter s. If s ≥ 1 we are using the method proposed by the authors in [4] to
let Ā be strictly positive. We can clearly identify from the given figures that there are values of the
scaling parameter for which the approximations are unsuitable, despite appearing as suitable from
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its introduction in the paper. Figure 3.6 evaluates negativity, clearly isolating a region of scaling of
â such that the approximation is accurate and positivity preserving.

In MATLAB, the matrix exponential can be computed using the expm() function. This imple-
mentation is very stable, due to the implementation of the scaling and squaring method [17, 26].
The implementation of scaling and squaring is motivated by the identity that

eA =
[
e

A
r

]r
.

The method takes r to be a given power of 2, say such that an approximation of exp(A/r) is stable
by A/r having a norm bounded below a threshold [16], and then repeatedly squares the result to
get an approximation for exp(A). This process provides much more stability in using the Padé
approximation, or even the series definition, of the matrix exponential.

3.3.3 A first-order approximation

In our discussion of the Padé approximation we looked at guaranteed positivity of particular ap-
proximations. We will now discuss some stronger results, centred around the approximation

ehA = [I − hA]
−1

+O(h2)

which is first-order accurate and guaranteed to be positivity preserving. First, note that when
looking at the Padé approximation we considered the positivity of the approximation

ehA ≈
[
I − h

2
A

]−1 [
I +

h

2
A

]
.

What is interesting is that both Q−1 and P in this Padé approximation are themselves first order
approximations of exp((h/2)A).

Understanding the positivity of this approximation involves Gershgorin’s theorem for the eigen-
values of a matrix.

Theorem 3.4 (Gershgorin [10, 18]). The eigenvalues of a matrix A lie in the union of the n discs
Di where

Di =

z ∈ C : |z − aii| ≤
n∑

j=1,j ̸=i

|aij |

 .

Proof. Proof omitted, see [18], pages 389− 390.

Gershgorin’s theorem is a very useful bound on the eigenvalues - the disc Di is centered at aii
and its radius is the sum of the absolute values of the non-diagonal entries in the rest of the column.
This means that for a graph-Laplacian matrix, the discs containing the eigenvalues are centered at
negative values on the real axis, and because a graph-Laplacian matrix has a zero column sum, these
discs are restrained to the left half of the complex plane. Assume A has eigenvalues λi. Assuming
h > 0, I − hA has eigenvalues 1− hλi. Since the eigenvalues of the inverse matrix are the inverses
of the eigenvalues,2 the eigenvalues of [I − hA]−1 are 1/(1 − hλ). From Gershgorin’s theorem,
the eigenvalues of A have negative real part, so these eigenvalues of the first order exponential
approximation belong to the strictly positive half of the complex plane. We know that [I − hA] has

2For matrix M and eigenpair µ, y, y = M−1My = M−1µy and divide by µ.
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positive diagonal entries and negative off-diagonal entries, and we can use Gershgorin’s theorem to
show that the diagonal of [I−hA]−1 must be positive. The proof that this inverse is entirely positive
is given in [4].

The positivity preserving methods from Equations 3.5, 3.15 retain positivity and second order
when some of the matrix exponentials are replaced with this first order substitution. We evaluate
the truncation error of the second order Magnus integrator when substituting the inside exponential
with an approximation.

τm(h) = x(tn + h)− exp

[
hA

([
I − h

2
A(xn)

]−1

xn

)]
xn

= x(tn + h)− exp

[
hA

([
exp

([
h

2
A(xn) +O(h2)

]
xn

)]
xn

)]
xn

We consider the exponential term and how the internal Taylor expansion brings the O(h2) term out
of A

exp

[
hA

([
exp

([
h

2
A(xn)

]
xn

)
+O(h2)

]
xn

)]
xn

= exp

[
hA

([
exp

([
h

2
A(xn)

]
xn

)]
xn

)
+O(h3)

]
xn

We can take the O(h3) out to show that this is clearly the regular second order Magnus method
plus a remainder in h3 and hence is second order. We have already looked at the order of the second
order Magnus integrator in its original form.

3.3.4 A Proposed Method using Series Expansion

In this subsection and the next, we develop our own ideas from those provided by the authors in
[4], aiming to use approximations to aid the computational cost of these numerical methods. We
propose an approximation which can be used in the context of positivity preservation. Theoretically,
the approximations should be flexible and positivity preserving. We will investigate the properties
of using the series definition of the exponential, while also considering the priority of positivity
preservation. First, recall for a graph-Laplacian matrix A the reduction A = Ā+ âI such that Ā is
nonnegative. Therefore exp(A) = exp(Ā+ âI) = exp(â) exp(Ā). In the general case, distribution of
the matrix exponential involves the commutator [16], however the identity matrix commutes with
any other square matrix of the same size.

Then, we approximate this matrix exponential using the series definition

exp(Ā) ≈
N∑

k=0

1

k!
Ak =: TN (Ā).

Clearly TN is an N -th order approximation to the matrix exponential. Therefore

exp(A) = exp(â)TN (Ā) +O(hN+1).

However, we apply the approximation to both the matrix and the scalar exponentials, so our ap-
proximation takes the form

exp(A) = TN (â)TN (Ā) +O(hN+1). (3.18)

Furthermore, since Ā is entirely positive, we would expect the approximation to be positivity pre-
serving. We acknowledge that we have given notable attention earlier to the impracticality of using
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Figure 3.7: Comparison of how the scaling parameter for the diagonal offset, as seen in Figure 3.5
affects the error of the approximation to the matrix exponential. The vertical axis is the evaluation
of ||y− ȳ||2 where ȳ is a Monte-Carlo estimate of y = exp(A)x using random 10× 10 linear systems.
The true value y is evaluated using expm(). Top row: approximation using the series definition
of the matrix exponential. Bottom row: approximation using the Padé method. Column 1: first
order (Padé [1, 0]) approximations. Column 2: second order (Padé [1, 1]) approximations. Column
3: fifth order (Padé [3, 2]) approximations. Column 4: tenth order (Padé [5, 5]) approximations.
The diagonal Padé methods maintain stability for large offset.

56



-5 0 5
0

0.1

0.2

0.3

0.4

0.5

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

-5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

Relative negativity of the matrix approximation to the exponential depending on the scaling of the diagonal offset

Figure 3.8: Results exploring relative negativity of the approximation of the matrix exponential, as
in Figure 3.7. Top row: approximation using the series definition of the matrix exponential. Bottom
row: approximation using the Padé method. The orders of approximations used are not the same
as the previous figure, since we stick to diagonal Padé approximations. Column 1: second order
(Padé [1, 1]) approximations. Column 2: fourth order (Padé [2, 2]) approximations. Column 3: tenth
order (Padé [5, 5]) approximations. Column 4: twentieth order (Padé [10, 10]) approximations. The
diagonal Padé methods maintain stability for large offset.
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Figure 3.9: Further visualisation of the error of the series approximation to the product of matrix
exponential and vector. Logarithmic vertical axis is used for clarity. From left to right: error of the
approximation of orders 1 to 4. Using the decomposition A = Ā+ âI, where â = −s|max(aii)|, we
approximate the matrix exponential using a separation. There is clearly always a minimiser over s
depending on the order of the method used which gives the best convergence. Again using a Monte
Carlo estimator for 10× 10 random systems
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Approximations applied to the MAPK cascade model

Figure 3.11: Visualisation of the second order Magnus integration when different approximations to
the matrix exponential are used. Left: EM2, using two matrix exponentials with expm(). Middle:
IP2, using a first order positivity preserving approximation and a second order Padé. Right: EB2,
using first and second order approximations to the exponential from the series definition.
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Figure 3.12: Order of convergence for EM2, IP2 and EB2 integration methods. We plot the relative
error of the solution at end time T against the step size h used in the integration scheme. The EM2
method is second order accurate [4], and IP2 is also second order since their gradients match. EB2
is tested for both s = 0 and s = 1, but is only theoretically positivity preserving for s = 1.

the series expansion on its own, and now we are using the series expansion in our approximation. We
will return to this point later. See Figures 3.7 and 3.8, evaluating the behaviour of approximations
to the matrix exponential and vector product. As we mentioned earlier, the computation of the
matrix exponential by a series expansion can be very unstable, which we observe here. This brings
attention to the first problem with this approach: the series approximation by itself is fairly poor
for low order approximations, compared to Padé.

Consider the example given at the beginning of the discussion of the Padé approximation. We
have the matrix

A =

−4 1 0
2 −1 2
2 0 −2


and vector

x =

31
2

 .

We evaluate y = exp(A)x in MATLAB using expm() and provide an approximation ym = TN (â)TN (Ā)x
given the required order N . We have visualised this approximation in Figure 3.9, where we can iden-
tify positions of optimality for the approximations depending on s. The minimum region of values
for s required for optimal error is always strictly less than 1. Note that this leads to another problem:
in order for the method to preserve positivity in theory, we require s ≥ 1, however the optimal values
of s for our lower order approximations do not satisfy this constraint. Despite this, we continue.
Instead of comparing the convergence of different order approximations to the matrix exponential,
it may be insightful to apply these methods to an integrator and compare with the methods and
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approximations have already been established.
Note the results given in Figure 3.10. The convergence of these methods follow steeper gradi-

ents as N increases as the remainder in O(hN ) decreases. This figure generates a random graph-
Laplacian matrix A and random vector x, and then evaluates a relative error ||y − yN ||2/||y||2,
where y = exp(A)x and yN = TN (A)x. We can deduce that the error should be O(||A||N+1) for
some subordinate matrix norm on A. Figure 3.10 also uses a value of the scaling parameter s which
we recognise does not guarantee positivity preservation, instead it has been chosen to improve the
approximation in a sense of relative error. This demonstrates a third problem with using the series
approximation: the approximation is unlikely to converge for low order N , and the norm of the
matrix plays a large role in the error of the approximation. Increasing the scaling parameter s
means we are taking the exponential of a matrix with a larger diagonal, and hence with a larger
spectral norm. Therefore if we increase s to ensure positivity, our approximation will be, in a sense
of relative error, worse.

We will now evaluate an experiment, considering how we can apply approximations to the matrix
exponential to numerical methods. We will consider three methods, all of which are variations of
the EM2 Magnus integrator, using

• EM2: Two matrix exponentials, computed using expm().

• IP2: One first order approximation using [I − hA]−1 and one second order diagonal Padé
approximation.

• EB2: One first order and one second order approximation using the series method proposed,
with scaling parameter chosen to consider positivity preservation.

We will examine each of these methods applied to the MAPK cascade.
For IP2, we used the reduction A = Ā+ âI with a = −s|max(aii)| and chose s = 1 to adhere to

the method outlined by [4], namely that this should be positivity preserving. In our discussion on
the Padé approximation we showed why positivity is not necessarily preserved. For the EB2 method,
we used first and second order series approximations with both s = 0 and s = 1. From our testing,
s = 0 meant the approximation was more usable but not unconditionally positivity preserving.
We found that increasing s makes the computation of EB2 far more expensive, and unusable for
moderate h. It would not be useful to consider negative values of s since we have discussed that
this is not appropriate for positivity preservation. First, see Figure 3.11. We show the behaviour of
the integration from EM2, IP2 and EB2 on separate figures. The EM2 and IP2 integrations appear
similar, which follows from the results concluded by [4], being that the EM2 method is second order
accurate. Furthermore, the IP2 method retains the second order accuracy of EM2, since it uses a
positivity-preserving first-order approximation, followed by a second order Padé approximation. It
is important to recall that we have shown that this Padé approximation is not positivity preserving.
The EB2 method, using series exponentials, is surprisingly accurate to EM2.

Finally, observe Figure 3.12, where we show the convergences of the methods. To compute the
order of convergence of these methods, we obtain a solution to the problem using ode45() with an
extremely low error tolerance, which we refer to as the master solution. We integrate the system
up to time T = 200 and store the final value. Then, given a value of h, we integrate the system
again using a positivity preserving method. We repeat this for a range of values of h decreasing in
magnitude in order to plot the rate of convergence. We use the vector 2-norm to obtain a relative
error given by ||yP − y||2/||y||2, where y is our master solution and yP is our approximation. This
provides sufficient data to visualise the order of convergence of a numerical method of our choice.
We repeat this for all the methods we wish to analyse.
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Figure 3.13: Order of convergence for the positivity preserving modification to the [1, 1] Padé ap-
proximation to the matrix exponential. The order matches a given second order approximation.
The construction of this approximation guarantees positivity.

Since EM2 and IP2 are both second order, they converge to the “exact” solution at the same
rates. We have graphed EB2 choosing both s = 0 and s = 1. For s = 0, the approximation is not
guaranteed to preserve positivity, but the approximation follows the order of EM2 closer than the
IP2 approximation. Choosing s = 1 means we are approximating the exponential in a way that
guarantees positivity. However, the approximation becomes prohibitively expensive, and IP2 is a
better method for timesteps h > 10−3. In fact, for timesteps h > 10−2 the error of the approximation
is so large that the method is unusable - the error is outside the visible region of the graph. For
extremely small timesteps h ≈ 10−4 EB2 is only ever as good as IP2. Essentially, the error between
EM2 and EB2 is that we can save on computing matrix exponentials with EB2, but we may need
to perform a thousand timesteps in the place of one.

The main problem with EB2 is that when we apply the reduction A = Ā+ âI and start working
with the diagonal offset parameter s, we want s ≥ 1 in order to guarantee positivity, but optimal
error is attained out of this bound (recall Figure 3.9). This problem gets worse when we look at how
the diagonal offset affects Ā, because if s is sufficiently large then it scales with the spectral radius
of Ā, and taking a low order sereis approximation of the exponential of this matrix is going to be
less accurate as this increases. In simpler terms, by using the series approximation and being given
control of the diagonal offset, it is challenging to have both positivity and convergence.

3.3.5 A Proposed Improvement to the Padé Approximation

Developing from before, we will consider using more robust techniques to again improve the cost
of a numerical integration scheme from [4]. The following method applies many results that we
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Figure 3.14: Methods EM2, IP2 and IQ2 applied to the MAPK problem, evaluating the global error
as a function of the timestep. All methods are clearly second order, however EM2 uses directly
computed matrix exponentials from expm(), while IQ2 uses positivity-preserving approximations.
IP2 is as we have defined earlier. EM2 solution computed in 196.7 seconds. IP2 solution computed
in 324.5 seconds. IQ2 solution computed in 346.0 seconds.
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have explored in this section. First, the construction of the Padé approximation. Second, the
implementation of scaling and squaring. Third, the decomposition A = Ā+ aI. Finally, Lemma 3.3
on the positivity of the inverse [I −A]−1.

We propose a numerical integration scheme which is another modification of EM2, except using
two matrix exponential approximations which are positivity preserving. This method is identical
to the IP2 method we introduced in the previous section, except for the modification of the second
order Padé approximation. Hence this is the change that we will discuss here.

Recall Lemma 3.3 - clearly scaling is useful. Then using the Padé approximation,

ehA =
[
e

hA
2m

]2m
=

[[
I − hA

2m+1

]−1 [
I +

hA

2m+1

]
+O(h2)

]2m

=

[[
I − hA

2m+1

]−1 [
I +

hA

2m+1

]]2m
+O(h2)

so clearly this is a valid approximation method.
Our approximation method is as follows. First, we deconstruct A as per A = Ā + âI, as we

have looked into earlier. We ignore any scaling parameter in this choice, implicitly taking s = 1
by having â being the most negative entry on the diagonal of A. We can then approximate the
exponential by taking exp(A) = exp(a) exp(Ā) and approximating the exponential of Ā. We can
choose to approximate the scalar or compute it directly, as computing the scalar exponential is not
considered computationally expensive - we have found there is not a significant error in either case.
For the Padé [1, 1] approximation of Ā, we can guarantee the numerator matrix will be positive
regardless of its scaling. In order to ensure positivity of the denominator matrix, we find a scaling
2m such that Ā/2m satisfies the bound required in Lemma 3.3. There is a trick here. In order to
satisfy the bound, we need to know the 2-norm of Ā. However, we know that ||A||2 <

√
d||A||1 in

general [18], where d is the dimension of the matrix. The 1 norm is the maximum column sum of
the matrix. However, since A is a graph-Laplacian matrix, the maximum column sum of Ā is â by
construction. Hence we don’t need to make any computations on the properties on the matrix. We
compute the Padé approximation for the scaled-down matrix, then repeatedly square to return to
the original scale. This gives us a [1, 1] Padé approximation which guarantees positivity.

This is a simplified version of the actual method implemented by MATLAB to compute the
matrix exponential. Cost is reduced by computing the [1, 1] approximation, and by not needing to
compute any matrix norms.

We have shown the results of this implementation in Figures 3.13 and 3.14. The former indicates
that the matrix approximation is itself second order accurate, while the latter indicates that EM2
maintains second order accuracy when this approximation is implemented. Rate of convergence is
computed again by comparing the final values of the solution to that of a master solution, obtained
using ode45() method with extremely low tolerance, and computing a relative error in the 2-norm.
We can see that IQ2 retains second order accuracy. The IQ2 method is unconditionally positivity
preserving, unlike the IP2 method proposed by the authors in [4], as we have explored earlier.
Furthermore, we can see from Figure 3.14 that the IQ2 method provides a closer approximation
than IP2.

Note that in Figure 3.14 we have stated the computation times of both methods for solving the
IVP. Despite our implementation taking longer than the internal function, this is expected since the
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core included functions for MATLAB run using compiled FORTRAN code which is much faster in
general than the interpreter for MATLAB itself [25].

Implementation of our positivity preserving Padé approximation in integration schemes is given
in Appendix B.3.2.

3.4 Wider Positivity Preservation

3.4.1 The Implicit Euler Method

Consider a system defined in its most general form by ẋ = f(t, x). Let y be the solution to the
backward Euler method, so given x = xn we require y = xn+1 to satisfy.

y = x+ hf(t, y)

The following result shows that this method is positivity preserving.

Theorem 3.5 (Hundsdorfer, Verwer (2003) [20]). The implicit Euler method is unconditionally
positivity preserving for any positive step size h > 0.

Proof. The expression for the method is y = x+ hf(t, y), which we assume is continuous depending
on h, where t and x are fixed. This does require the continuity of f . We write this method as a
function y(h), where the result depends on a parameter h for fixed t and x.. Our aim is to show
that if x is nonnegative then so is y(h) for all h, however it is sufficient to prove this for a given h.
This is because y is continuous on h, and h is chosen arbitrarily, so y will stay within the positive
region. Assume that, given some positive h0, we have that y(h) > 0 for h < h0, except for the i-th
entry where we assume yi(h0) = 0. Then we have

0 = yi(h0) = xi + h0fi(t, y(h0)).

The coefficient h0 is positive, and we assumed vi is nonnegative. In order for the problem to preserve
positivity we require that fi(t, y(h0)) be nonnegative. In the case that xi = 0 and the same for fi,
then yi = 0 so the i-th entry in the solution remains at zero. Otherwise, we have a contradiction,
meaning that if x is positive then the implicit Euler method preserves positivity.

The proof, as given in the textbook [20], causes some confusion with the implementation of the
implicit Euler method at a fixed t. If it was instead given for some evaluation of f(t, y(h)) where
t = t0 + h, the process would be more clear since we are clearly computing f at the time tn+1 and
value y = xn+1 of the solution.

The result lends some similarity to when we discussed positivity preservation of a problem gov-
erned by a graph-Laplacian matrix in Theorem 3.2. The assumption of the behaviour of the deriva-
tive at zero is key to the result, since this is the behaviour that preserves positivity. When discussing
earlier in this chapter, we used the result in a linear case, but have now been able to show it generally.
Interestingly, the connection between these two results is even more evident when we consider how
this does in fact apply to problems of the form ẋ = A(x)x, where A is a graph-Laplacian matrix.
The implicit Euler method applied to this problem is

xn+1 = xn + hA(xn+1)xn+1

which rearranges to
xn+1 = [I − hA(xn+1)]

−1
xn
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which we know is positivity preserving. The positivity preservation of this matrix can be seen as
another case of this general result on the behaviour of the backward Euler method.

It is widely recognised that there are no methods which, when applied to generally formulated
problems, preserve positivity unconditionally and also have truncation error of order greater than
1. This result is stated in [5], and referenced in [4, 20] and others.

3.4.2 Review

We have given an overview on current methods in positivity preservation. The focus of our analysis
has been the formulation and improvement of second-order methods. This contrasts to symplectic
and more general geometric integrators, where we have fourth and higher order schemes available.
In a sense, this is one limitation of the analysis we have provided, namely that we have studied im-
provements over current methods, but have not provided any framework for how we would formulate
higher-than-second-order methods. This itself is still an active area of research.

Having finished our analysis of positivity preservation, we provide a discussion to review all the
topics from this report.
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Chapter 4

Review and Discussion

4.1 Improvements

4.1.1 Wider Geometric Integration

There are many facets of geometric numerical integration which we have not covered in this report.
Many of our results on symplectic integration borrow from the book by Hairer, Lubich and Wanner
[13], which covers the topic in far more depth. We have covered the results that we believe to be key
for understanding symplectic integrators. However, there are properties of symplectic methods, and
approaches for constructing methods we have explored, which lend themselves to different disciplines
within the broader subject.

One of these topics is time-symmetry. First, recall the definition of the adjoint flow map. From
Chapter 2, when forming methods, if we have a numerical flow denoted Φh, the adjoint is the map
defined Φ∗

h = Φ−1
−h. A method is time-symmetric if it is self-adjoint, that is Φ∗

h = Φh. The definition

of the adjoint means this identity can be written equivalently as Φ−1
h = Φ−h. If we have a general

method Φh, then the composition Φh/2 ◦ Φ∗
h/2 is time-symmetric. We can prove this by composing

a step of the method in h with a step in −h as follows(
Φh/2 ◦ Φ∗

h/2

)
◦
(
Φ−h/2 ◦ Φ∗

−h/2

)
= Φh/2 ◦

(
Φ∗

h/2 ◦ Φ−h/2

)
◦ Φ∗

−h/2

= Φh/2 ◦
(
Φ−1

−h/2 ◦ Φ−h/2

)
◦ Φ∗

−h/2

= Φh/2 ◦ I ◦ Φ∗
−h/2

= Φh/2 ◦ Φ∗
−h/2

= Φh/2 ◦ Φ−1
h/2

= I.

where I is the identity map. Each step only follows from associativity or the definition of the adjoint.
Therefore, (

Φh/2 ◦ Φ∗
h/2

)−1

=
(
Φ−h/2 ◦ Φ∗

−h/2

)
hence the method is self-adjoint. Recall that the Störmer-Verlet method, which we constructed in
this way, is time-symmetric.
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Methods for preserving time-symmetry have their use in the same fields as symplectic integrators
[15]. The property means that if we integrate forward in time to a certain point, we can integrate
backwards in time using our last result as an initial condition, and we will return to the original
starting value. Time-symmetric methods1 are able to accomodate variable time-steps, unlike sym-
plectic methods [13], hence they are popular choices in particle physics and related fields, where
problems involve precise integration of oscillatory systems.

4.1.2 Properties of Symplectic Methods

Our focus on symplectic methods was developed from the assumption that its qualities come from
the Hamiltonian structure. Since the symplectic identity is inherent to the model problem being
Hamiltonian, a lot of analysis can be performed on the relationship between the symplectic integrator
and the Hamiltonian system. However, this motivates us to analyse a symplectic integrator in the
context of a Hamiltonian problem, and not as a general method. For our positivity preserving
methods, we analysed and justified the truncation errors of methods, whereas these properties were
not explored in as much depth for symplectic integration. This could be justified by the reason that
this field is much more complete, and the properties of these methods are much more understood
in the field of numerical analysis, hence we do not feel the need to explain these results. However,
there are many general properties of symplectic methods which we have not explored, for example
the merits to slower growth in error [13].

4.1.3 Computations in Positivity Preservation

The methods we have explored for positivity preservation are second order at best. This motivates
the development of higher-order methods in this field, which is not something we have explored. We
have, however, given an introduction to the Magnus expansion, the form for which can be used for
formulating methods. This is explored in more detail by the authors in [4], but we have not included
it. They introduce a third-order method, however it does not guarantee positivity unconditionally
and requires seven matrix exponentials.

To design a third-order method, for example, we would first consider the expression of the solution
x(t) = exp(Ω(t))x0, and write a third-order (in A) Magnus expansion. We would then design our
method as a third-order (in h) positivity preserving approximation to this expansion.

For the methods we have explored, the problem remains of computing the matrix exponential. We
were able to formulate a positivity preserving method which only approximated these exponentials,
however the depth of this subject goes much deeper than we have explored. One such approach
would be Krylov methods for approximating the matrix exponential [24]. Were this a project on
numerical linear algebra, this would be an interesting avenue to explore. However, the methodology
itself is very different to the approximation methods we have focused on. We have decided instead
to focus on the approximation methods seen, and develop these effectively for use in our problems.

4.2 Review

4.2.1 Summary of Symplectic Integration

In Chapter 2 of this project, we explored symplectic integration in the context of Hamiltonian
dynamics. Our goal was to explore symplectic integration methods and understand how they are

1Time-symmetric methods which are not also symplectic
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constructed. We showed symplecticity of a small selection of methods. The implicit midpoint
and Störmer-Verlet schemes are both symplectic second-order methods, however their structures
are inherently different, with the Verlet scheme constructed using the symplectic Euler method, a
particular modification for Hamiltonian systems, while the implicit midpoint scheme is formulated
as a second order implicit method, which is symplectic when applied to a Hamiltonian problem.

We looked at results for symplectic Runge-Kutta methods, in order to expand the theory to
methods capable of arbitrary order. With the statement that symplectic Runge-Kutta methods
need satisfy the statement of Theorem 2.18, we are able to justify the symplectic nature of arbitrary
methods. These RK methods are necessarily implicit, building further on our understanding of the
applications for implicit methods. The Störmer-Verlet scheme is enticing because it is explicit for a
separable Hamiltonian, but we can understand that this may not be the case in general. Furthermore,
these RK methods preserve quadratic invariant quanitites, the necessary condition for symplecticity.
Outside of symplectic integration, preservation of invariant quanitites is its own area of study.

Finally, we studied a fundamental result on how the numerical solution can be thought of as an
exact solution to a modified problem. We considered the relationship between the Hamiltonian of
the modified problem, and that of the original. We were able to state and prove that the order of the
numerical method is the order of closeness between these two quantities. This gives us two ways of
thinking about the numerical solution. First is that if the method is convergent, then the numerical
solution will become more accurate as the step size decreases. Therefore, a higher order method
will converge to this solution faster. On the other hand, if we decrease the step size then we also
know that the modified Hamiltonian will converge closer to the original. A higher order symplectic
method means that this modified Hamiltonian will converge faster. Either way, we converge to the
same result. We get the true qualitative behaviour.

The example of the gravitational three-body problem is an excellent demonstration of the mo-
tivation for symplectic integration. The symplectic method preserves the trajectories of the orbit,
while the general purpose explicit RK method undergoes drift, inherent change of a quality of the
system. This is the qualitative preservation of symplectic integration. When a symplectic integrator
is used in its many applications, the quality is an inherent requirement of the solution.

4.2.2 Summary of Positivity Preservation

For our exploration of positivity preservation, we aimed to introduce the key methods introduced
by the authors of [4], explore their results on inherent positivity, and suggest modifications to the
methods.

To start, we introduced the concept of the graph-Laplacian matrix and showed its role in the
preservation of positivity for the solution to the initial value problem. This was necessary in order to
introduce numerical methods for solving the problem while preserving positivity. A very important
result was how the matrix exponential of a graph-Laplacian matrix applies to positivity preservation.
We know that if the problem is governed by a graph-Laplacian matrix, then the solutions preserve
positivity. We also know that if the problem is governed by a constant matrix, we can write the
solution in terms of the matrix exponential. Therefore, if we can break the problem into separable
components involving constant graph-Laplacian matrices, then we know we can use the matrix
exponential to produce a solution that preserves positivity. This is the approach we justified when
exploring the second order Strang splitting (ES2) method. We also covered the second order Magnus
(EM2) integrator, covering the theory of the Magnus expansion as the solution to a time-dependent
system of ODEs. Despite not exploring the theory in detail, we included the information on the
construction of the Magnus expansion for completeness.

Unlike our study on symplectic integration, a large part of our motivation for studying positivity
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preservation is the potential to develop new contributions to the field. This could be explored in two
ways: first, by constructing higher order, cheaper-than-expected, numerical methods for positivity
preservation, or by optimising current methods using approximation theory, while maintaining the
positivity preserving nature. We chose the second option, exploring the theory of different methods
for approximating the matrix exponential, while restricting our options to those which still uncon-
ditionally preserve positivity. We looked at both the series and Padé approximations to the matrix
exponential, exploring the differences between the two, and ended up with two proposed modifica-
tions to the EM2 method. The first option replaced a matrix exponential with a second order series
approximation, chosen up to scaling in order to guarantee positivity. However, error bounds on the
series approximation meant that the method, while being second order, required an extremely small
time step in order to work at all. The second option was to use a second order Padé approximation,
with the implementation of scaling and squaring in order to maintain stability. We found that this
method worked, as a second order positivity preserving integrator with only first and second order
approximations to the matrix exponential. The implementation of this method in its current state
is slower than the regular implementation, however the process is, in theory, much more optimised.

4.3 Conclusion

If we let h be the difference from one real number to the next, then any convergent method with
step size h is symplectic, positivity preserving, and arguably the perfect geometric integrator. Un-
fortunately, this is a rather difficult parameter to achieve. Instead, we have to settle for a geometric
integration scheme, based on the quality we want to preserve. For the problems we have explored,
this requires rewriting the problem in a form that inherently admits this quality on its own - we
cannot have a symplectic integrator without a Hamiltonian. Once we have a problem as we want
it, we can pick an integration method. We have looked at this two ways. First, for symplectic
integration we have explored some of the available options and demonstrated their qualities. A lot
of our examples lend themselves to the Störmer-Verlet method, which we hope to show is an effective
choice as a general symplectic integrator. However, we took a different approach to positivity preser-
vation by analysing and adjusting the methods available. We spent a large portion of our writing
exploring the numerical analysis of approximations to the matrix exponential, in order to reduce the
cost of the integration methods while maintaining accuracy. We hope that these proposed adjusted
methods are valuable in the preservation of positivity.

The reader should have developed an understanding of the motivation and the execution of
geometric numerical integration. We have shown examples of how qualities, inherent to a system, are
not respected by general-purpose methods, particularly in the case of symplectic integration. In turn,
we have explored methods which are centred around the aim of quality preservation. Both facets,
both qualities we have explored have clear applications in the natural sciences, such as Hamiltonian
systems for rigid body dynamics, and positive systems for chemical kinetics. However, at any point
we may question the necessity of a geometric integrator. Despite being able to achieve qualitative
preservation, we lack the ease of adjustment found in general purpose integrators. Willing to save
effort, we may think that a general purpose method will be fine if we just set the error tolerance low
enough. We hope to have shown that this is not the argument that geometric numerical integration
aims to win, rather we aim to construct a different kind of integrator whose primary purpose is
qualitative preservation. Fortunately, they also provide a good approximation to the solution.
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Appendix A

Supplementary Content

A.1 Preliminary

A.1.1 Linear Algebra

Ascertaining the convergence of computing the matrix exponential requires bounds on matrix norms,
particularly in the implementation of scaling and squaring. There are three vector p-norms of
interest, where for a vector x we have

||x||p =

(
d∑

i=1

xp
i

) 1
p

.

We are only ever concerned with p = 1 (sum of moduli), p = 2 (the “Euclidean norm”) and p = ∞
(modulus of maximal element). Matrix norms are induced by vector norms:

||A||p = max
x

||Ax||p
||x||p

.

The matrix 2-norm is the most theoretically interesting since it is the spectral radius of the matrix
- the modulus of the maximal eigenvalue. The 1-norm is the maximum column sum of the moduli
of the entries, and the ∞ norm is the same for the row sums. However the norms are equivalent,
being that for p and q norms on a matrix A there exist constants α, β such that

α||A||q ≤ ||A||p ≤ β||A||q.

Therefore bounds on one norm can be expressed as bounds on any other defined norm. We use this
in the scaling and squaring implementation to avoid computing a matrix 2-norm [17].

A.1.2 The MATLAB ODE Solvers

The recommended functions for solving ordinary differential equations in MATLAB are presented
as odexy(), where x and y are whole numbers. These indicate the order of convergence of the
methods that they apply in solving the given ODE. For our purposes, we use ode45(), which uses
the Dormand-Prince pair of order 4 and 5 explicit Runge-Kutta methods. The function can be
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represented in a Butcher tableau

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 −56/15 32/9
8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
1 35/384 0 500/1113 125/192 −2187/6784 11/84

35/384 0 500/1113 125/192 −2187/6784 11/84 0
5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40.

The first row representing b⊤ is the linear combination of the ki which is fifth-order accurate, while
the second row corresponds to the fourth-order method. The implementation then uses the difference
between these methods as an estimate for the error.

A.1.3 The MATLAB Matrix Exponential

The MATLAB function for computing the matrix exponential employs Padé approximation alongside
scaling and squaring. Given a matrix A, a scaling parameter s is chosen such that

||A/2s||∞ < 1/2

is satisfied. The (6, 6) Padé approximation of A/2s is computed and then squared s times. This
approximation is accurate within ϵ ≈ 10−15, which is approximately the machine precision for
standard double precision 64-bit arithmetic [26, 17].

A.2 Positivity Preservation

A.2.1 Convex Optimisation for ES2

Denote a vector g of the elements which appear in the expansions of x(tn+h) and its approximations.

g :=


A′′AxAxx
A′A′Axxx
A′A2xx
A′AxAx
AA′Axx
A3x

 .

We ignore the fact that this is a vector of vectors which is technically not defined. We denote it
as a vector in order to write linear combinations of elements as vector inner products. Define the
following vectors

v :=
(
1
6

1
6

1
3 0 1

6
1
6

)⊤
uz :=

(
1
8 0 1

8 0 1
4

1
6

)⊤
ux :=

(
0 1

4
1
4

3
8

1
8

1
6

)⊤
.
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Evaluating v⊤g gives us the expansion of the actual value of x(tn + h) at order h3. We also have
u⊤
z g and u⊤

x g, which are the expansions of the z and x components of the method at the same order.
Let µ, λ be scalars for us to take a linear combination of the x and z methods. The truncation error,
denoted here by τ , is

τ = v⊤g − µ(u⊤
z g)− λ(u⊤

x g)

= (v − µuz − λux)
⊤
g.

We aim to optimise this method by minimising the 2-norm of the vector on the left, since we have
control over the parameters µ, λ in our optimisation. It also serves to note that g is not a vector in
the traditional sense and we have no knowledge on the scaling of its entries, therefore it is ignored.
Therefore our problem is of the form

minimise ||v − µuz − λux||2.

We have the additional contraint that µ+λ = 1 in mind, because the method must be second order
accurate. We can block the vectors and scalars to rewrite the problem in the form

minimise f(µ, λ) = ||v −
[
uz ux

](µ
λ

)
||22.

The squared norm makes the computations easier. If we let this be our objective function, then the
constraint function is g(µ, λ) = (µ+ λ− 1). The Lagrangian is

L(µ, λ, k) =

6∑
i=1

(vi − µuz(i) − λux(i))
2 + k(µ+ λ− 1)

we take partial derivatives of the Lagrangian in order to find the minimiser

∂L

∂µ
=

6∑
i=1

2(vi − µuz(i) − λux(i))(−uz(i)) + k = 2(µu⊤
z uz + λu⊤

x uz − v⊤uz) + k

∂L

∂λ
=

6∑
i=1

2(vi − µuz(i) − λux(i))(−ux(i)) + k = 2(µu⊤
z ux + λu⊤

x ux − v⊤ux) + k

∂L

∂k
= λ+ µ− 1.

When all the partial derivatives are zero, this can be written as the linear system2u⊤
z uz 2u⊤

x uz 1
2u⊤

z ux 2u⊤
x ux 1

1 1 0

µ
λ
k

 =

2v⊤uz

2v⊤ux

1

 .

We can write this numerically because we know all the values in the vectors, so the system is
equivalently  70 52 288

52 178 288
288 288 0

µ
λ
k

 =

 76
100
288
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having scaled the system to representation in integer values. The solution is

µ =
17

24

λ =
7

24

k =
5

128
.
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Appendix B

MATLAB Implementations

Some code is repeated in separate files.

B.1 Numerical Integration

B.1.1 Classical Numerical Methods

1 %% ODE solvers: forward and backward Euler methods

2

3 TSPAN = [0 5];

4 Y0 = [1];

5

6 % [T1,X1] = forwardEulerMethod(@(x)lineartest(x),TSPAN ,Y0)

7 % [T2,X2] = clippingMethod(@(x)lineartest(x),TSPAN ,Y0)

8 % [T2,X2] = implicitMidpointMethod(@(x)pendulum(x),TSPAN ,Y0)

9 % [T3,X3] = backwardEulerMethod(@(x)pendulum(x),TSPAN ,Y0)

10

11

12

13 hold on

14 % subplot (121)

15 % plot(X1(:,1),X1(:,2),X2(:,1),X2(:,2));

16 % subplot (122)

17 % plot(T1,X1(:,1),T2 ,X2(:,1));

18

19 for N = 2:2:20

20 h = 5/N;

21 [T,X] = exponentialEulerMethod(@(x) lineartest(x), TSPAN , Y0, h)

22 plot(T,X)

23 end

24

25 %plot(T1 , X1);

26 % plot(T2, X2);

27 %

28 % X = linspace (0,5,50);

29 % Y = exp( -2.5*X);

30 %

31 % plot(X, Y);

32

33 % plot(X1(:,1), X1(:,2))

34 % plot(X2(:,1), X2(:,2))
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35 % plot(X3(:,1), X3(:,2))

36

37 function dxdt = oscillator(x)

38 dxdt = [x(2); -x(1)];

39 end

40

41 function dxdt = lineartest(x)

42 lambda = -2.5;

43 dxdt = lambda;

44 end

45

46 %linear test problem is unstable if |xi| < |xi - h l xi|

47 % |1/(1-hl)| < 1

48

49 function dxdt = pendulum(x)

50 k = 2;

51 dxdt = [(k^2)*sin(x(1)); x(2)];

52 end

53

54 function [TOUT , YOUT] = forwardEulerMethod(ODEFUNC , TSPAN , Y0)

55 h = 0.5;

56 YOUT = [];

57 TOUT = TSPAN (1):h:TSPAN (2)

58 y = Y0;

59

60 for t = TOUT

61 YOUT = [YOUT y];

62 y = y + h*ODEFUNC(y);

63 end

64

65 TOUT = transpose(TOUT);

66 YOUT = transpose(YOUT);

67 end

68

69 function [TOUT , YOUT] = clippingMethod(ODEFUNC , TSPAN , Y0)

70 h = 0.5;

71 YOUT = [];

72 TOUT = TSPAN (1):h:TSPAN (2)

73 y = Y0;

74

75 for t = TOUT

76 YOUT = [YOUT y];

77 y = y + h*ODEFUNC(y);

78 for i = 1:size(y)

79 if y(i) < 0

80 y(i) = 0;

81 end

82 end

83 end

84

85 TOUT = transpose(TOUT);

86 YOUT = transpose(YOUT);

87 end

88

89 function [TOUT , YOUT] = exponentialEulerMethod(ODEFUNC , TSPAN , Y0, h)

90 YOUT = [Y0];

91 TOUT = TSPAN (1):h:TSPAN (2)

92 y = Y0;

93

94 for t = TOUT (2:end)
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95 y = expm(h*ODEFUNC(y))*y;

96 YOUT = [YOUT y];

97 end

98

99 TOUT = transpose(TOUT);

100 YOUT = transpose(YOUT);

101 end

102

103

104 function [TOUT , YOUT] = backwardEulerMethod(ODEFUNC , TSPAN , Y0)

105 h = 0.1;

106 YOUT = [];

107 TOUT = TSPAN (1):h:TSPAN (2)

108 y = Y0;

109

110 for t = TOUT

111 y_init = y + h*ODEFUNC(y);

112 targetfunc = @(x) x - y - h*ODEFUNC(x);

113 y_iter = fsolve(targetfunc ,y_init);

114 y = y + h*ODEFUNC(y_iter);

115 YOUT = [YOUT y];

116 end

117

118 TOUT = transpose(TOUT);

119 YOUT = transpose(YOUT);

120 end

121

122

123 function [TOUT , YOUT] = implicitMidpointMethod(ODEFUNC , TSPAN , Y0)

124 h = 0.1;

125 YOUT = [];

126 TOUT = TSPAN (1):h:TSPAN (2)

127 y = Y0;

128

129 for t = TOUT

130 y_init = y + h*ODEFUNC(y);

131 targetfunc = @(x) x - y - h*ODEFUNC ((x+y)./2);

132 y_iter = fsolve(targetfunc ,y_init);

133 y = y + h*ODEFUNC (( y_iter + y)./2);

134 YOUT = [YOUT y];

135 end

136

137 TOUT = transpose(TOUT);

138 YOUT = transpose(YOUT);

139 end

140

141

142 function [TOUT , YOUT] = trapeziumMethod(ODEFUNC , TSPAN , Y0)

143 h = 0.01;

144 YOUT = [];

145 TOUT = TSPAN (1):h:TSPAN (2)

146 y = Y0;

147

148 for t = TOUT

149 y_init = y + h*ODEFUNC(y);

150 targetfunc = @(x) x - y - h*( ODEFUNC(x) + ODEFUNC(y))./2;

151 y_iter = fsolve(targetfunc ,y_init);

152 y = y + h*( ODEFUNC(y_iter) + ODEFUNC(y))/2;

153 YOUT = [YOUT y];

154 end
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155

156 TOUT = transpose(TOUT);

157 YOUT = transpose(YOUT);

158 end

B.2 Symplectic Integration

B.2.1 Hamiltonian Methods

Three-Body Problem and methods for Hamiltonian framework. Störmer-Verlet integration scheme.

1 %% Symplectic Euler -VT Solver for arbitrary dimensional problem

2

3 % xinit = [0;

4 % 0;

5 % 10*cos (2*pi/3 + pi/4);

6 % 10*sin (2*pi/3 + pi/4);

7 % 10*cos (4*pi/3 + pi/4);

8 % 10*sin (4*pi/3 + pi/4);

9 % 0;

10 % 0;

11 % 0;

12 % -100;

13 % 100;

14 % 0

15 % ];

16

17

18 % R1 [ .746156 , 0] ; R2 [ -0.373078 , .238313]; R3 [ -0.373078 , - .238313] (8)

19 % V1[ 0, .324677] ; V2 [.764226 , -.162339]; V3 [ -[.764226 , -.162339

20

21 % xinit = [0.746156;

22 % 0;

23 % -0.373078;

24 % 0.238313;

25 % -0.373078;

26 % -0.238313;

27 % 0;

28 % 0.324677;

29 % 0.764226;

30 % -0.162339;

31 % -0.764226;

32 % -0.162339;

33 % ];

34

35 xinit = [1;

36 0;

37 0;

38 0;

39 -1;

40 0;

41 0.3471128135672417;

42 0.532726851767674;

43 0;

44 0;

45 -0.3471128135672417;

46 -0.532726851767674

47 ];

48

49
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50 d = 6;

51 J = [

52 zeros (6), eye(6);

53 -eye (6), zeros (6);

54 ]

55

56 % xinit = [3.8, 1.8, 0, 0]’;

57 % X0 = [pi/4, 0]’;

58 TSPAN = [0 20];

59 % opts = odeset(’RelTol ’,1e-12)

60 % [T,X] = ode45(@(t,x) J*threeBody(t,x), TSPAN , xinit);

61 [T,X] = Verlet(@(t,x) threeBody(t,x), TSPAN , xinit);

62

63 % [T1,X1] = forwardEulerMethod(@(x) pendulum(x), TSPAN , X0);

64 % [T2,X2] = implicitMidpointMethod(@(x) pendulum(x), TSPAN , X0);

65 % [T3,X3] = backwardEulerMethod(@(x) pendulum(x), TSPAN , X0);

66

67 hold on

68

69 % plot(X1(:,1), X1(:,2))

70 % plot(X2(:,1), X2(:,2))

71 % plot(X3(:,1), X3(:,2))

72

73 plot(X(:,1),X(:,2))

74 plot(X(:,3),X(:,4),’x’)

75 plot(X(:,5),X(:,6))

76

77 hold off

78

79

80 %% Functions

81

82 function dH = oscillator(x)

83 dH = [x(1); x(2)];

84 end

85

86 function dH = pendulum(x)

87 k=-1.2;

88 dH = [

89 (k^2)*sin(x(1));

90 x(2)

91 ];

92 end

93

94 function dH = phonator(~, x)

95 lamda = 0.8;

96 beta = 3;

97 omega = 0.3;

98

99 q1 = x(1);

100 q2 = x(2);

101 p1 = x(3);

102 p2 = x(4);

103

104 f = @(x) 1-x + beta *(1 - 1./x.^2);

105 g = @(x) lamda *(1-x) + beta *(1 - 1./x.^2);

106

107 dH = [

108 omega*(q1 - q2) - f(q1);

109 omega*(q2 - q1) - g(q2);
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110 p1;

111 p2;

112 ];

113 end

114

115 function Y = phonatorHamilEval(X)

116 q1 = X(:,1);

117 q2 = X(:,2);

118 p1 = X(:,3);

119 p2 = X(:,4);

120

121 lamda = 0.8;

122 beta = 3;

123 omega = 0.3;

124

125 F = @(x) x - 0.5*x.^2 + beta*(x + 1./x);

126 G = @(y) lamda *(y - 0.5*y.^2) + beta*(y + 1./y);

127

128 Y = 0.5*(p1.^2 + p2.^2) + 0.5* omega*(q1-q2).^2 - F(q1) - G(q2);

129 end

130

131 function dH = threeBody(~,x)

132 %% Hamiltonian for the three body problem

133 m1 = 1/3; m2 = m1; m3 = m1;

134 G = 9.8;

135

136 q1 = [x(1); x(2)];

137 q2 = [x(3); x(4)];

138 q3 = [x(5); x(6)];

139 p1 = [x(7); x(8)];

140 p2 = [x(9); x(10)];

141 p3 = [x(11); x(12)];

142

143 r12 = q1 -q2;

144 d12 = norm(r12);

145 r23 = q2 -q3;

146 d23 = norm(r23);

147 r31 = q3 -q1;

148 d31 = norm(r31);

149

150 dHdq1 = (G*m2*m1)*(-r12)./( d12^3) + (G*m3*m1)*(r31)./(d31 ^3);

151 dHdq2 = (G*m1*m2)*(r12)./(d12^3) + (G*m3*m2)*(-r23)./(d23 ^3);

152 dHdq3 = (G*m1*m3)*(-r31)./( d31^3) + (G*m2*m3)*(r23)/(d23^3);

153 dHdp1 = p1./m1;

154 dHdp2 = p2./m2;

155 dHdp3 = p3./m3;

156

157 dH = [

158 -dHdq1;

159 -dHdq2;

160 -dHdq3;

161 dHdp1;

162 dHdp2;

163 dHdp3

164 ];

165

166 end

167

168

169 %3 body problem
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170 %y3 project

171

172 %asymptotic convergence (poincare)

173

174 %conjugacy (trapezium and impl midpoint)

175

176 % make explicit , then also apply different methods (implicit)

177 function [TOUT , XOUT] = SymplecticEulerMethod(ODEHAMIL , TSPAN , X0)

178 %% Symplectic Euler Method (First Order)

179 %{

180 SymplecticEulerMethod(ODEHAMIL , TSPAN , X0) integrates the ODE defined by

181

182 X’ = J.ODEHAMIL(X)

183

184 ODEHAMIL is the Hamiltonian for the ODE. J is the block matrix [0 I; -I 0].

185 Applies the Symplectic Euler method.

186 X0 must be a column vector corresponding to initial conditions for the ODE.

187 TSPAN is the period of integration.

188 %}

189 h = 2^( -6);

190 [m,n] = size(X0);

191 dim = max(m,n)/2

192 TOUT = TSPAN (1):h:TSPAN(end);

193 J = [zeros(dim), eye(dim); -eye(dim), zeros(dim)]

194 X_init = X0;

195 XOUT = zeros(size(TOUT , 2), size(X0, 1));

196 XOUT (1,:) = X0;

197

198 for k = 2:size(TOUT , 2)

199

200 %perform an estimate using regular Euler.

201 X_guess = X_init + h*J*ODEHAMIL(TOUT(k), X_init);

202

203 %use fsolve to complete the method , applying the regular euler guess as a

204 %starting point

205 X = fsolve(@(x) x - X_init - h*J*ODEHAMIL(TOUT(k), [X_init (1:dim ,:) ; x(dim +1:2*dim

,:)]),X_guess ,optimoptions (" fsolve","Display","none"));

206 XOUT(k,:) = X;

207 X_init = X;

208 end

209

210 TOUT = TOUT ’;

211

212 end

213

214 function p_out = Kinetic(ODEHAMIL ,t,p)

215 H = ODEHAMIL(t, [zeros (6,1); p]);

216 p_out = H(7:12);

217 end

218

219 function q_out = Potential(ODEHAMIL ,t,q)

220 H = ODEHAMIL(t, [q, zeros (6,1)]);

221 q_out = H(1:6);

222 end

223 function [TOUT , XOUT] = Verlet(ODEHAMIL , TSPAN , X0)

224 %% Stormer -Verlet Integrator

225 dim = size(X0)

226

227 h = 2^( -10);

228 [m,n] = size(X0);
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229 dim = max(m,n)/2

230 TOUT = TSPAN (1):h:TSPAN(end);

231 J = [zeros(dim), eye(dim); -eye(dim), zeros(dim)]

232 X_init = X0;

233 XOUT = zeros(size(TOUT , 2), size(X0, 1));

234 XOUT (1,:) = X0;

235

236 q = X0(1:dim)

237 p = X0(dim +1:2* dim)

238

239 %this method is explicit via. computing the separated hamiltonian

240 % very poorly written

241 for k = 2:size(TOUT , 2)

242 t = TOUT(k);

243

244 p_half = p - (h/2)*Potential(ODEHAMIL , t, q);

245 q_next = q + h*Kinetic(ODEHAMIL , t, p_half);

246 p_next = p_half - (h/2)*Potential(ODEHAMIL , t, q_next);

247

248 XOUT(k,:) = [q_next ’ p_next ’];

249

250 p = p_next;

251 q = q_next;

252 end

253

254 TOUT = TOUT ’

255 end

256

257 function [TOUT , YOUT] = forwardEulerMethod(ODEHAMIL , TSPAN , Y0)

258 %% The classic

259 h = 0.001;

260 YOUT = [];

261 TOUT = TSPAN (1):h:TSPAN (2)

262 y = Y0;

263 dim = size(Y0 ,1)/2;

264 J = [zeros(dim), eye(dim); -eye(dim), zeros(dim)]

265

266 for t = TOUT

267 y = y + h*J*ODEHAMIL(y);

268 YOUT = [YOUT y];

269 end

270

271 TOUT = transpose(TOUT);

272 YOUT = transpose(YOUT);

273 end

274

275 function [TOUT , YOUT] = implicitMidpointMethod(ODEHAMIL , TSPAN , Y0)

276 %% Symplectic method!

277 h = 0.1;

278 YOUT = [];

279 TOUT = TSPAN (1):h:TSPAN (2)

280 y = Y0;

281 dim = size(Y0 ,1)/2;

282 J = [zeros(dim), eye(dim); -eye(dim), zeros(dim)]

283

284 for t = TOUT

285 y_init = y + h*J*ODEHAMIL(y);

286 targetfunc = @(x) x - y - h*J*ODEHAMIL ((x+y)./2);

287 y_iter = fsolve(targetfunc ,y_init);

288 y = y + h*J*ODEHAMIL (( y_iter + y)./2);
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289 YOUT = [YOUT y];

290 end

291

292 TOUT = transpose(TOUT);

293 YOUT = transpose(YOUT);

294 end

295

296

297 function [TOUT , YOUT] = backwardEulerMethod(ODEHAMIL , TSPAN , Y0)

298 %% Feels like we only go backwards

299 h = 0.1;

300 YOUT = [];

301 TOUT = TSPAN (1):h:TSPAN (2)

302 y = Y0;

303 dim = size(Y0 ,1)/2;

304 J = [zeros(dim), eye(dim); -eye(dim), zeros(dim)]

305

306 for t = TOUT

307 y_init = y + h*J*ODEHAMIL(y);

308 targetfunc = @(x) x - y - h*J*ODEHAMIL(x);

309 y_iter = fsolve(targetfunc ,y_init);

310 y = y + h*J*ODEHAMIL(y_iter);

311 YOUT = [YOUT y];

312 end

313

314 TOUT = transpose(TOUT);

315 YOUT = transpose(YOUT);

316 end

B.3 Positivity Preservation

B.3.1 Second Order Positivity Preserving Methods

ES2 and EM2 applied to the stratospheric reaction model from [4]. Approximations implemented
in modifications of ES2.

1 %% exponential splitting method on chemical kinetics problem

2

3 % [T,Z,X] = threeExponentialMethod(@A, [0 0.3], [1 0 0]’);

4 % [T2, Z2 , X2] = twoSubsOneExp(@A , [0 0.3], [1 0 0]’);

5

6 %gblerr (0.3);

7 tspan = [12*3600 , 72*3600];

8 init = [9.906e1, 6.624e8, 5.326e11 , 1.697e16 , 8.725e8, 2.240e8]’;

9 % [TM,XM] = MagnusEM2(@(t,y) B(t,y), tspan , init , 30);

10 [TS ,XS] = threeExponentialMethod(@(t,y) B(t,y), tspan , init , 30);

11

12

13

14 % [TE, XE] = forwardEulerMethod(@(t,y) B(t,y)*y, tspan , init , 0.01);

15 % [TC, XC] = clippingMethod(@(t,y) B(t,y)*y, tspan , init , 0.01);

16 %

17 % [TRK , XRK] = ode45(@(t,y) B(t,y)*y, tspan , init);

18

19 semilogy(TS,XS)

20 xlim(tspan)

21 ylim ([10, 1e16])

22
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23 %% generate the invariants

24

25 MC = [1,1,3,2,1,2]*(XC ’);

26 ME = [1,1,3,2,1,2]*(XE ’);

27 MRK = [1,1,3,2,1,2]*(XRK ’);

28

29 M2C = [0 0 0 0 1 1]*(XC ’);

30 M2E = [0 0 0 0 1 1]*(XE ’);

31 M2RK = [0 0 0 0 1 1]*(XRK ’);

32

33 %% Linear Test Problem

34

35 tspan = [0 4];

36 xinit = [1];

37 lambda = -2.5

38

39 ltp = @(t,x) lambda*x;

40

41 [TE , XE] = forwardEulerMethod(ltp , tspan , xinit , 0.5)

42 [TI , XI] = backwardEulerMethod(ltp , tspan , xinit , 0.5)

43 [TC , XC] = clippingMethod(ltp , tspan , xinit , 0.5)

44

45 ts = linspace (0,4,50)

46 xs = exp(lambda .*ts)

47

48

49 %% plotting

50

51 semilogy(TE,XE)

52 title("Euler simulation of a stratospheric reaction model")

53 xlabel ("time t")

54 ylabel (" concentration ")

55 legend ("O^{1D}","O","O_3","O_2","NO","NO_2")

56 ylim ([1e-4,1e16])

57 xlim(tspan)

58

59

60 %% invariants

61

62 semilogy(TE,M2E)

63 title("Euler ")

64 xlabel ("time t")

65 ylabel (" invariant mass")

66 xlim(tspan)

67

68

69

70 %% ode functions

71

72

73 function [TOUT , YOUT] = forwardEulerMethod(ODEFUNC , TSPAN , Y0 , h)

74 YOUT = [];

75 TOUT = TSPAN (1):h:TSPAN (2);

76 y = Y0;

77

78 for t = TOUT

79 YOUT = [YOUT y];

80 y = y + h*ODEFUNC(t,y);

81 end

82
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83 TOUT = transpose(TOUT);

84 YOUT = transpose(YOUT);

85 end

86

87

88 function [TOUT , YOUT] = clippingMethod(ODEFUNC , TSPAN , Y0 ,h)

89 YOUT = [];

90 TOUT = TSPAN (1):h:TSPAN (2);

91 y = Y0;

92

93 for t = TOUT

94 YOUT = [YOUT y];

95 y = y + h*ODEFUNC(t,y);

96 y(y<0) = 0;

97 end

98

99 TOUT = transpose(TOUT);

100 YOUT = transpose(YOUT);

101 end

102

103 function [TOUT , YOUT] = backwardEulerMethod(ODEFUNC , TSPAN , Y0 , h)

104 YOUT = [];

105 TOUT = TSPAN (1):h:TSPAN (2)

106 y = Y0;

107

108 for t = TOUT

109 YOUT = [YOUT y];

110 y_init = y + h*ODEFUNC(t,y);

111 targetfunc = @(x) x - y - h*ODEFUNC(t+h,x);

112 y_iter = fsolve(targetfunc ,y_init);

113 y = y_iter;

114 end

115

116 TOUT = transpose(TOUT);

117 YOUT = transpose(YOUT);

118 end

119

120 function [TOUT , YOUT] = exponentialEulerMethod(ODEFUNC , TSPAN , Y0, h)

121 YOUT = [];

122 TOUT = TSPAN (1):h:TSPAN (2);

123 y = Y0;

124

125 for t = TOUT

126 YOUT = [YOUT y];

127 y = expm(h*A(t,y))*y

128 end

129

130 TOUT = transpose(TOUT);

131 YOUT = transpose(YOUT);

132 end

133

134 function [TOUT , ZOUT , XOUT] = threeExponentialMethod(ODEMATR , TSPAN , X0, h)

135 TOUT = TSPAN (1):h:TSPAN (2);

136 x = X0;

137 z = X0;

138 dim = size(X0 ,1);

139 XOUT = zeros(size(TOUT , 2),dim);

140 ZOUT = XOUT;

141 XOUT (1,:) = x’;

142 ZOUT (1,:) = z’;
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143

144 for k = 2:size(TOUT ,2)

145 t = TOUT(k);

146

147 x_hf = expm((h/2)*ODEMATR(t,z))*x;

148

149 z_n = expm(h*ODEMATR(t,x_hf))*z;

150 ZOUT(k,:) = z_n ’;

151

152 x_n = expm((h/2)*ODEMATR(t,z_n))*x_hf;

153 XOUT(k,:) = x_n ’;

154

155 x = x_n;

156 z = z_n;

157 end

158

159 TOUT = transpose(TOUT);

160 end

161

162 function [TOUT , XOUT] = MagnusEM2(ODEMATR , TSPAN , X0 , h)

163 TOUT = TSPAN (1):h:TSPAN (2);

164 x = X0;

165 dim = size(X0 ,1);

166 XOUT = zeros(size(TOUT , 2),dim);

167 XOUT (1,:) = x’;

168

169 for k = 2:size(TOUT ,2)

170 t = TOUT(k);

171 % two matrix exponentials

172 U = (h/2)*ODEMATR(t,x);

173 V = expm(U)*x;

174 W = h*ODEMATR(t,V);

175 x_n = expm(W)*x;

176

177 XOUT(k,:) = x_n ’;

178

179 x = x_n;

180 end

181

182 TOUT = transpose(TOUT);

183 end

184

185

186 function [TOUT , ZOUT , XOUT] = approximatedExponentials(ODEMATR , TSPAN , X0, h)

187 TOUT = TSPAN (1):h:TSPAN (2)

188 x = X0;

189 z = X0;

190 dim = size(X0 ,1);

191 XOUT = zeros(size(TOUT , 2),dim);

192 ZOUT = XOUT;

193 XOUT (1,:) = x’;

194 ZOUT (1,:) = z’;

195

196 for k = 2:size(TOUT ,2)

197 x_hf = (eye (3) - (h/2)*ODEMATR(z))\x;

198

199 z_n = (eye (3) - h*ODEMATR(x_hf))\z;

200 ZOUT(k,:) = z_n ’;

201

202 x_n = (eye (3) - (h/2)*ODEMATR(z_n))\x_hf;
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203 XOUT(k,:) = x_n ’;

204

205 x = x_n;

206 z = z_n;

207 end

208

209 TOUT = transpose(TOUT);

210 end

211

212 function [TOUT , ZOUT , XOUT] = twoSubsOneExp(ODEMATR , TSPAN , X0, h)

213 TOUT = TSPAN (1):h:TSPAN (2)

214 x = X0;

215 z = X0;

216 dim = size(X0 ,1);

217 XOUT = zeros(size(TOUT , 2),dim);

218 ZOUT = XOUT;

219 XOUT (1,:) = x’;

220 ZOUT (1,:) = z’;

221

222 for k = 2:size(TOUT ,2)

223 % approximation

224 x_hf = (eye (3) - (h/2)*ODEMATR(z))\x;

225

226 % approximation

227 z_n = (eye (3) - h*ODEMATR(x_hf))\z;

228 ZOUT(k,:) = z_n ’;

229

230 % matrix exponential

231 x_n = expm((h/2)*ODEMATR(z_n))*x_hf;

232 XOUT(k,:) = x_n ’;

233

234 x = x_n;

235 z = z_n;

236 end

237

238 TOUT = transpose(TOUT);

239 end

240

241 function [TOUT , ZOUT , XOUT] = oneSub(ODEMATR , TSPAN , X0 , h)

242 TOUT = TSPAN (1):h:TSPAN (2)

243 x = X0;

244 z = X0;

245 dim = size(X0 ,1);

246 XOUT = zeros(size(TOUT , 2),dim);

247 ZOUT = XOUT;

248 XOUT (1,:) = x’;

249 ZOUT (1,:) = z’;

250

251 for k = 2:size(TOUT ,2)

252 % approximation

253 x_hf = (eye (3) - (h/2)*ODEMATR(z))\x;

254

255 % matrix exponential

256 z_n = expm(h*ODEMATR(x_hf))*z;

257 ZOUT(k,:) = z_n ’;

258

259 % matrix exponential

260 x_n = expm((h/2)*ODEMATR(z_n))*x_hf;

261 XOUT(k,:) = x_n ’;

262
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263 x = x_n;

264 z = z_n;

265 end

266

267 TOUT = transpose(TOUT);

268 end

269

270 function GL = A(y)

271 GL = [

272 -0.04, y(3)*1e4, 0;

273 0.04, y(2)*(-3e7), 0;

274 0, y(2)*(3e7), 0

275 ];

276 end

277

278 function v = sig(t, TR , TS)

279 TL = mod((t/3600) ,24);

280 if (TR <= TL) & (TL <= TS)

281 k = (2*TL - TR - TS)/(TS - TR);

282 v = 0.5*(1 + cos(pi*abs(k)*k));

283 else

284 v = 0;

285 end

286

287 end

288

289 function STR = B(t,y)

290 TR = 4.5;

291 TS = 19.5;

292 k1 = 2.643*(1e-10)*sig(t,TR ,TS)^3;

293 k2 = 8.018*1e-17;

294 k3 = 6.12*(1e-4)*sig(t,TR,TS);

295 k4 = 1.576*1e-15;

296 k5 = 1.07*(1e-3)*sig(t,TR,TS)^2;

297 k6 = 7.11*1e-11;

298 k7 = 1.2*10^ -10;

299 k8 = 6.062*1e-15;

300 k9 = 1.069*1e-11;

301 k10 = 1.289*(1e-2)*sig(t,TR ,TS);

302

303 gamma = k3 + k5 + k4*y(2) + k7*y(1) + k8*y(5);

304 STR = [

305 -(k6 + k7*y(3)), 0, k5 , 0,

0, 0;

306 k6, -(k2*y(4) + k4*y(3) + k9*y(6)), k3 , 2*k1,

0, k10;

307 0, k2*y(4)/3, -gamma , 2*k2*y(2)

/3, 0, 0;

308 k7*y(3)/2, k4*y(3)+k9*y(6)/2, (gamma + k7*y(1) /2), -(k1 + k2*y

(2)), 0, k9*y(2)/2;

309 0, 0, 0, 0,

-k8*y(3), k10+k9*y(2);

310 0, 0, 0, 0,

k8*y(3), -(k10+k9*y(2))

311 ];

312 end

313

314 function f = Drv(~,y)

315 g = A(y);

316 f = g*y;
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317 end

318

319 function gblerr(T)

320 tspan = [0, T];

321 yinit = [1 0 0]’;

322 DIVS = 18;

323 D = 1:DIVS;

324 opts = odeset(’RelTol ’,1e-10);

325 [TM , XM] = ode45(@(t,y) Drv(t,y), tspan , yinit , opts);

326 exact = XM(end ,:) ’;

327

328 H = 0.3./(2.^(D-1));

329

330 ERR = zeros(DIVS ,3)

331

332 for d = D

333 h = 0.3/(2^(d-1));

334 [T1 , ~, X1] = threeExponentialMethod(@A , tspan , yinit , h);

335 [T2 , ~, X2] = oneSub(@A, tspan , yinit , h);

336 [T3 , ~, X3] = twoSubsOneExp(@A , tspan , yinit , h);

337 eee = X1(end ,:) ’;

338 aee = X2(end ,:) ’;

339 aae = X3(end ,:) ’;

340 ERR(d, 1) = norm(exact - eee , 2);

341 ERR(d, 2) = norm(exact - eae , 2);

342 ERR(d, 3) = norm(exact - aae , 2);

343 end

344

345 loglog(H,ERR)

346 end

B.3.2 Testing of Matrix Exponential Approximations

1 %% pade counterexample

2

3 A = [

4 -4 1 0;

5 2 -1 2;

6 2 0 -2

7 ]

8

9 firstorderapproximation = inv(eye(3) - A)

10

11 eig(firstorderapproximation)

12

13 x = [0.75; 0.25; 0.5];

14

15 pade_denominator = inv(denominator (1,1,A))

16 pade_numerator = numerator (1,1,A)

17 trueexpA = expm(A)

18

19 a = -max(max(abs(diag(diag(A)))))

20 ThrA = A - a*eye(size(A))

21

22 pade_threshden = inv(denominator (1,1,ThrA));

23 pade_threshnum = numerator (1,1,ThrA);

24

25 secondpade = denominator (1,1,A)\numerator (1,1,A)

26
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27 y_true = trueexpA*x

28 y_brute = secondpade*x

29 y_optim = padeproduct (1,1,A,x,0)

30

31 %% sanity test

32

33

34 N = 7

35 n = 1:N

36

37

38 samples = 500

39

40 Y = zeros(N,1)

41 for k = 1:N

42 E = [];

43 for iter = 1: samples

44 A = GL(10);

45 x = rand (10 ,1);

46

47 y = expm(A)*x;

48 ym = positiveSeriesExp(n(k),A ,0.4)*x;

49 E = [E norm(y-ym ,2)/norm(y,2)];

50 end

51 Y(k) = mean(E);

52 end

53

54 plot(n,Y)

55

56

57 %% order of convergence test

58

59 D = 8;

60 d = zeros(1,D);

61 d(1) = 1;

62 for k = 2:D

63 d(k) = 2*d(k-1);

64 end

65 H = 1./d;

66

67 samples = 500;

68

69 Y = zeros(1,D)

70 for r = 1:D

71 h = H(r)

72 E = []

73 for iter = 1: samples

74 A = GL(4);

75 x = rand (4,1);

76

77 % m_approx = positiveSeriesExp (1,h*A,0.5);

78 y = expm(h*A)*x;

79 % ym = m_approx*x;

80 ym = superPade(h*A,x);

81

82 E = [E norm(y-ym ,2)/norm(y,2)];

83 end

84 Y(r) = mean(E);

85 end

86
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87 loglog(H,Y)

88

89

90 %% further pade counterexample

91

92 A = [

93 -4 1 0;

94 2 -1 2;

95 2 0 -2

96 ]

97 x = [3; 1; 2];

98

99 S = linspace (0,1,21)

100 Y = []

101 for s = linspace (0,1,21)

102 y = expm(A)*x;

103 ym = positiveSeriesExp (2,A ,0.35)*x;

104 Y = [Y norm(y-ym ,2)];

105 end

106 semilogy(S,Y)

107

108 % ym = positiveSeriesExp(A,4,s)*x;

109 % y = expm(A)*x;

110

111 %% compare the true exponential to the Pade estimator

112 N = 10;

113 A = rand(N);

114 A = A - diag(diag(A));

115 for k = 1:N

116 A(k,k) = -sum(A(:,k));

117 end

118

119 x = rand(N,1)

120

121 h = rand()

122 eig(A)

123 eig(inv(eye(N)-h*A))

124

125 trueexpA = expm(A);

126 y = trueexpA*x; % should preserve positivity

127 y_approx = padeproduct (1,1,A,x, -0.1) % hmm

128 error = norm(y - y_approx ,2)

129

130 %% compare superpade

131

132 % A = GL(10)

133 % a = -max(max(abs(diag(diag(A)))))

134 % thrA = A - a*eye(size(A))

135 % [d,~] = size(A)

136 %

137 % scale = norm(thrA ,1) /((2^1) *(1-a))

138 %

139 % p2 = ceil(log2(sqrt(d)*abs(a)/(1-a)))-1

140 % inv(denominator (1,1,thrA./p));

141

142 A = GL(5);

143 x = rand (5,1);

144 y = expm(A)*x

145 yp = superPade(A,x)

146
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147

148 %% Another Monte Carlo

149

150 err = []

151 N = 10

152 E = zeros(1,N)

153 for order = 1:N

154 M = 10;

155 err = zeros(M,1);

156 for samples = 1:100

157 A = h*rand(M);

158 A = A - diag(diag(A));

159 for k = 1:M

160 A(k,k) = -sum(A(:,k));

161 end

162 x = rand(M,1);

163

164 y = expm(A)*x;

165

166 % [n,m] = nsplit(order);

167

168 % ym = padeproduct(n,m,A,x,0);

169 ym = positiveSeriesExp(order ,A ,0.5)*x;

170 if any(ym(ym <0))

171 sprintf (" NOOOOOOOO ")

172 end

173 err(samples) = norm(y-ym ,2);

174 end

175 E(order) = mean(err);

176 end

177 X = 1:N

178 plot(X, E)

179

180

181 %% Monte Carlo Estimator for behaviour of approximations

182

183 divs = 501;

184 startval = 0;

185 endval = 2;

186 SCL = linspace(startval ,endval ,divs);

187 E = zeros(divs ,1);

188 samples = 500;

189 for S = 1:divs

190 s = SCL(S);

191 err = zeros(1,samples);

192 for M = 1: samples

193 % generate a 10x10 linear system

194 N = 10;

195 A = GL(N);

196 x = rand(N,1);

197

198 y = expm(A)*x;

199 % s is used here

200 % y_approx = padeproduct (10,10,A,x,s);

201 % y_approx = positiveSeriesExp (3,A,s)*x;

202 y_approx = superPade(A,x);

203

204 % error

205 err(M) = norm(y-y_approx , 2);

206
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207 % negativity

208 % err(M) = size(y_approx(y_approx <0) ,1)/size(y,1);

209 end

210 E(S) = mean(err);

211 end

212 semilogy(SCL ,E)

213

214 %% Monte Carlo Estimator for convergence of approximations

215

216 divs = 10;

217 E = zeros(divs ,1);

218 H = E;

219 samples = 500;

220 for S = 1:divs

221 lambda = 2^(-S);

222 err = zeros(1,samples);

223 for M = 1: samples

224 % generate a 10x10 linear system

225 N = 10;

226 A = GL(N);

227 x = rand(N,1);

228

229 y = expm(lambda*A)*x;

230 % y_approx = padeproduct (10,10,A,x,s);

231 % y_approx = positiveSeriesExp (2,lambda*A,0)*x;

232 y_approx = superPade(lambda*A,x);

233 % y_approx = (eye(N) - lambda*A)\x;

234

235 % error

236 err(M) = norm(y-y_approx , 2)/norm(y, 2);

237

238 % negativity

239 % err(M) = size(y_approx(y_approx <0) ,1)/size(y,1);

240 end

241 E(S) = mean(err);

242 H(S) = lambda;

243 end

244 loglog(H,E)

245

246 %% Monte Carlo estimator AGAIN: f(order , offset) = error

247

248 N = 10;

249 endval = 5;

250 divs = 101;

251 F = zeros(N,divs);

252 samples = 500;

253

254 for n = 1:N

255 for S = 1:divs

256 s = (S-1)*endval /(divs -1);

257 ERR = zeros(samples ,1);

258 for k = 1: samples

259 % make a graph -laplacian random system

260 A = GL(10);

261 x = rand (10 ,1);

262

263 % evaluate y and the series approximation

264 y = expm(A)*x;

265 ym = positiveSeriesExp(n,A,s)*x;

266

94



267 % evaluate error

268 ERR(k) = norm(y-ym ,2);

269 end

270 F(n,S) = mean(ERR);

271 end

272 end

273 S = linspace(0,endval ,divs)

274 n = 1:10

275 mesh(S,n,F)

276

277

278

279

280 %% functions

281

282 function Y = padeproduct(n,m,A,x,scl)

283 %% Computes the Pade n,m approximation of [e^A]x

284 %scl is a scale for the thresholder

285 a = -scl*max(max(abs(diag(diag(A)))));

286 ThrA = A - a*eye(size(A));

287

288 P = numerator(n,m,ThrA);

289 Q = denominator(n,m,ThrA);

290 p = numerator(n,m,a);

291 q = denominator(n,m,a);

292 % (q\p)*(Q\P)

293 Y = (p/q)*(Q\(P*x));

294 end

295

296 function [a,b] = nsplit(k)

297 %% a+b = k

298 k_iseven = mod(k+1,2);

299 a = floor(k/2) + not(k_iseven);

300 b = floor(k/2);

301 end

302

303 function MAT = numerator(n,m,A)

304 %% Pade Numerator matrix from formula

305 MAT = zeros(size(A));

306 for j = 0:n

307 num = factorial(n + m - j)*factorial(n);

308 den = factorial(n+m)*factorial(j)*factorial(n-j);

309 MAT = MAT + (num/den)*mpower(A,j);

310 end

311 end

312

313 function MAT = denominator(n,m,A)

314 %% Pade denominator matrix

315 MAT = zeros(size(A));

316 for j = 0:m

317 num = factorial(n + m - j)*factorial(m);

318 den = factorial(n+m)*factorial(j)*factorial(m-j);

319 MAT = MAT + (num/den)*mpower((-A),j);

320 end

321 end

322

323 function y = superPade(A,x)

324 %% 1,1 Positivity preserving Pade approximation using magic

325 a = -max(max(abs(diag(diag(A)))));

326 [d,~] = size(A);
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327 ThrA = A - a*eye(size(A));

328

329 % abs(a) is the 2-norm of thresholded A, which is useful for getting

330 % stability conditions

331 % get the power for "squaring"

332 m = 0;

333 r = 10;

334 while r >= 1

335 m = m + 1;

336 r = sqrt(d)*abs(a)/(2^m);

337 end

338

339 P = numerator (1,1,ThrA ./(2^m));

340 Q = denominator (1,1,ThrA ./(2^m));

341

342 % also approximate the scalar

343 p = numerator (1,1,a/(2^m));

344 q = denominator (1,1,a/(2^m));

345

346

347 z = p/q;

348 Z = Q\P;

349 for k = 1:m

350 Z = Z*Z;

351 z = z*z;

352 end

353

354 y = z*Z*x;

355 end

356

357

358 function M = T(n,A)

359 %% truncated exponential

360 M = eye(size(A));

361 for k = n:-1:1

362 M = M * A./k;

363 M = M + eye(size(A));

364 end

365 end

366

367 function MAT = positiveSeriesExp(n,A,s)

368 %% Evaluates an approximation of the matrix exponential

369 % get positive A and diagonal offset

370 % series approximation

371 a = -s*max(max(abs(diag(diag(A)))));

372 ThrA = A - a*eye(size(A));

373

374 MAT = T(n,a)*T(n,ThrA);

375

376 end

377

378 function A = GL(N)

379 %% generates a graph -laplacian matrix of dimension N

380 A = rand(N);

381 A = A - diag(diag(A));

382 for k = 1:N

383 A(k,k) = -sum(A(:,k));

384 end

385 end
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B.3.3 Second Order Methods IP2, EB2, IQ2

Numerical methods with exponential approximations applied to the MAPK cascade.

1 %% magnus integrator

2

3

4 init = [0.1, 0.175, 0.15, 1.15, 0.81, 0.5]’

5 tspan = [0 200];

6 % opts = odeset(RelTol =1e-12); %12 is as good as it gets

7 % [T_master ,X_master] = ode45(@(t,y) MAPK(t,y)*y, tspan , init , opts);

8

9 [T_em2 , X_em2] = MagnusEM2(@MAPK , tspan , init , 0.1);

10 [T_ip2 , X_ip2] = MagnusIP2(@MAPK , tspan , init , 0.1);

11 [T_eb2 , X_eb2] = MagnusEB2(@MAPK , tspan , init , 0.0005);

12

13 subplot (131)

14 % plot(T_master , X_master)

15 plot(T_em2 , X_em2)

16

17 subplot (132)

18 plot(T_ip2 , X_ip2)

19

20 subplot (133)

21 plot(T_eb2 , X_eb2)

22

23

24

25 %% interpolate data

26

27 X_EM2 = interp1(T_em2 , X_em2 , T_master);

28 X_IP2 = interp1(T_ip2 , X_ip2 , T_master);

29 X_EB2 = interp1(T_eb2 , X_eb2 , T_master);

30

31 % subplot (141)

32 % plot(T_master , X_master)

33 %

34 % subplot (142)

35 % plot(T_master , X_EM2)

36 %

37 % subplot (143)

38 % plot(T_master , X_IP2)

39 %

40 % subplot (144)

41 % plot(T_master , X_EB2)

42

43 %interp1(old time points , data points , new time points) returns resampled

44 %data

45

46 %% error

47

48 subplot (131)

49 plot(T_master , vecnorm ((X_EM2 -X_master) ,2,2))

50

51 subplot (132)

52 plot(T_master , vecnorm ((X_IP2 -X_master) ,2,2))

53

54 subplot (133)

55 plot(T_master , vecnorm ((X_EB2 -X_master) ,2,2))

56

57 %% error data

97



58

59 % for each value of the timestep

60 % % compute the solution of the chosen method at the end time

61 % % take the norm of the error at the end

62 % plot global error against timestep

63 PN = 11;

64 H = zeros(PN ,1);

65 for i = 1:PN

66 H(i) = 1/(2^(i+2));

67 end

68

69 H_special = H./16;

70

71 X_true = X_master(end ,:)

72

73 %begin

74 %% EM2

75

76 E = zeros(size(H)) % vector of global errors

77 for k = 1:PN

78 h=H(k);

79 [~, X_emsol] = MagnusEM2(@MAPK , tspan , init , h);

80 x_emfin = X_emsol(end ,:);

81 E(k) = norm(x_emfin ’ - X_true ’,2)/norm(X_true ’,2);

82 end

83 loglog(H,E)

84

85 %% IP2

86 % same for IP2

87 E2 = zeros(size(H))

88 for k = 1:PN

89 h=H(k);

90 [~, X_ipsol] = MagnusIP2(@MAPK , tspan , init , h);

91 x_ipfin = X_ipsol(end ,:);

92 E2(k) = norm(x_ipfin ’ - X_true ’,2)/norm(X_true ’,2);

93 end

94 loglog(H,E2)

95

96 %% EB2

97 % same for EB2

98 E3 = zeros(size(H)) % vector of global errors

99 for k = 1:PN

100 h=H(k);

101 [~, X_ebsol] = MagnusEB2(@MAPK , tspan , init , h);

102 x_ebfin = X_ebsol(end ,:);

103 E3(k) = norm(x_ebfin ’ - X_true ’,2)/norm(X_true ’,2);

104 end

105 loglog(H,E3)

106

107 %% IQ2

108 % same for IQ2

109 E3 = zeros(size(H)) % vector of global errors

110 for k = 1:PN

111 h=H(k);

112 [~, X_iqsol] = MagnusIQ2(@MAPK , tspan , init , h);

113 x_iqfin = X_iqsol(end ,:);

114 E3(k) = norm(x_iqfin ’ - X_true ’,2)/norm(X_true ’,2);

115 end

116 loglog(H,E3)

117
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118 %% functions

119

120 function [TOUT , XOUT] = MagnusEM2(ODEMATR , TSPAN , X0 , h)

121 %% Second order Magnus integrator

122 TOUT = TSPAN (1):h:TSPAN (2);

123 x = X0;

124 dim = size(X0 ,1);

125 XOUT = zeros(size(TOUT , 2),dim);

126 XOUT (1,:) = x’;

127

128 for k = 2:size(TOUT ,2)

129 t = TOUT(k);

130 % two matrix exponentials

131 U = (h/2)*ODEMATR(t,x);

132 V = expm(U)*x;

133 W = h*ODEMATR(t,V);

134 x_n = expm(W)*x;

135

136 XOUT(k,:) = x_n ’;

137

138 x = x_n;

139 end

140

141 TOUT = transpose(TOUT);

142 end

143

144 function [TOUT , XOUT] = MagnusIP2(ODEMATR , TSPAN , X0 , h)

145 %% Magnus EM2 using inverse and pade approximations

146 TOUT = TSPAN (1):h:TSPAN (2);

147 x = X0;

148 dim = size(X0 ,1);

149 XOUT = zeros(size(TOUT , 2),dim);

150 XOUT (1,:) = x’;

151

152 for k = 2:size(TOUT ,2)

153 t = TOUT(k);

154 % inverse (solve) and Pade

155 U = (h/2)*ODEMATR(t,x);

156 V = (eye(size(U)) - U)\x;

157 W = h*ODEMATR(t,V);

158 x_n = padeproduct (1,1,W,x,1);

159

160 XOUT(k,:) = x_n ’;

161

162 x = x_n;

163 end

164

165 TOUT = transpose(TOUT);

166 end

167

168

169 function [TOUT , XOUT] = MagnusEB2(ODEMATR , TSPAN , X0 , h)

170 %% Magnus EM2 using series approximations

171 TOUT = TSPAN (1):h:TSPAN (2);

172 x = X0;

173 dim = size(X0 ,1);

174 XOUT = zeros(size(TOUT , 2),dim);

175 XOUT (1,:) = x’;

176

177 for k = 2:size(TOUT ,2)
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178 t = TOUT(k);

179 % series approximations of exponential , first and second order , with

180 % diagonal offset 0

181 s = 1;

182 U = (h/2)*ODEMATR(t,x);

183 V = positiveSeriesExp (1,U,s)*x;

184 W = h*ODEMATR(t,V);

185 x_n = positiveSeriesExp (2,W,s)*x;

186

187 XOUT(k,:) = x_n ’;

188

189 x = x_n;

190 end

191

192 TOUT = transpose(TOUT);

193 end

194

195 function [TOUT , XOUT] = MagnusIQ2(ODEMATR , TSPAN , X0 , h)

196 %% Magnus EM2 using inverse and positive pade approximation

197 TOUT = TSPAN (1):h:TSPAN (2);

198 x = X0;

199 dim = size(X0 ,1);

200 XOUT = zeros(size(TOUT , 2),dim);

201 XOUT (1,:) = x’;

202

203 for k = 2:size(TOUT ,2)

204 t = TOUT(k);

205 % inverse (solve) and Pade

206 U = (h/2)*ODEMATR(t,x);

207 V = (eye(size(U)) - U)\x;

208 W = h*ODEMATR(t,V);

209 x_n = superPade(W,x);

210

211 XOUT(k,:) = x_n ’;

212

213 x = x_n;

214 end

215

216 TOUT = transpose(TOUT);

217 end

218

219

220 function Y = padeproduct(n,m,A,x,scl)

221 %% Computes the Pade n,m approximation of [e^A]x

222 %scl is a scale for the thresholder

223 a = -scl*max(max(abs(diag(diag(A)))));

224 ThrA = A - a*eye(size(A));

225

226 P = numerator(n,m,ThrA);

227 Q = denominator(n,m,ThrA);

228 p = numerator(n,m,a);

229 q = denominator(n,m,a);

230 % (q\p)*(Q\P)

231 Y = (p/q)*(Q\(P*x));

232 end

233

234 function MAT = numerator(n,m,A)

235 %% Pade Numerator matrix from formula

236 MAT = zeros(size(A));

237 for j = 0:n
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238 num = factorial(n + m - j)*factorial(n);

239 den = factorial(n+m)*factorial(j)*factorial(n-j);

240 MAT = MAT + (num/den)*mpower(A,j);

241 end

242 end

243

244 function MAT = denominator(n,m,A)

245 %% Pade denominator matrix

246 MAT = zeros(size(A));

247 for j = 0:m

248 num = factorial(n + m - j)*factorial(m);

249 den = factorial(n+m)*factorial(j)*factorial(m-j);

250 MAT = MAT + (num/den)*mpower((-A),j);

251 end

252 end

253

254

255 function MAT = positiveSeriesExp(n,A,s)

256 %% Evaluates an approximation of the matrix exponential

257 % get positive A and diagonal offset

258 % series approximation

259 a = -s*max(max(abs(diag(diag(A)))));

260 ThrA = A - a*eye(size(A));

261

262 MAT = T(n,a)*T(n,ThrA);

263 end

264

265 function y = superPade(A,x)

266 %% 1,1 Positivity preserving Pade approximation using magic

267 a = -max(max(abs(diag(diag(A)))));

268 [d,~] = size(A);

269 ThrA = A - a*eye(size(A));

270

271 % abs(a) is the 2-norm of thresholded A, which is useful for getting

272 % stability conditions

273 % get the power for "squaring"

274 m = 0;

275 r = 10;

276 while r >= 1

277 m = m + 1;

278 r = sqrt(d)*abs(a)/(2^m);

279 end

280

281 P = numerator (1,1,ThrA ./(2^m));

282 Q = denominator (1,1,ThrA ./(2^m));

283

284 % also approximate the scalar

285 p = numerator (1,1,a/(2^m));

286 q = denominator (1,1,a/(2^m));

287

288

289 z = p/q;

290 Z = Q\P;

291 for k = 1:m

292 Z = Z*Z;

293 z = z*z;

294 end

295

296 y = z*Z*x;

297 end
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298

299 function M = T(n,A)

300 %% truncated exponential

301 M = eye(size(A));

302 for k = n:-1:1

303 M = M * (A./k);

304 M = M + eye(size(A));

305 end

306 end

307

308 function GL = A(y)

309 GL = [

310 -0.04, y(3)*1e4, 0;

311 0.04, y(2)*(-3e7), 0;

312 0, y(2)*(3e7), 0

313 ];

314 end

315

316 function GL = MAPK(~,y)

317 a = 0.1;

318 k1 = 100/3;

319 k2 = 1/3;

320 k3 = 50;

321 k4 = 1/2;

322 k5 = 10/3;

323 k6 = 1/10;

324 k7 = 7/10;

325 GL = [

326 -k7-k1*y(2) 0 0 k2 0 k6;

327 0 -k1*y(1) k5 0 0 0;

328 0 0 -k3*y(1)-k5 k2 k4 0;

329 (1 - a)*k1*y(2) a*k1*y(1) 0 -k2 0 0;

330 0 0 k3*y(1) 0 -k4 0;

331 k7 0 0 0 0 -k6

332 ];

333 end

334

335 function f = Drv(~,y)

336 g = A(y);

337 f = g*y;

338 end
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