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Abstract

A single mass model for phonation considers steady Bernoulli flow through a channel and a vocal
fold modelled by a stiff mass. The model formulates a second order non-linear ordinary differential
equation for the motion of the mass with two parameters. Conditions for oscillations can be ex-
pressed in terms of the parameters involved, and we deduce explicit results involving the stationary
equilibrium solutions. We formulate the equation as a first order vector ODE and derive the Jacobian
matrix for equilibria, allowing us to compute eigenvalues which inform us on the stability of these
stationary points. A two mass model considers the same problem with two stiffness-coupled masses
and a quasisteady flow. We obtain a fourth order system with four parameters. Under strong stiff-
ness coupling, the two masses move as one and are able to replicate the oscillatory behaviour of the
single mass model. We explore parameter configurations that yield different equilibrium solutions,
and again construct the Jacobian matrix to analyse the stability of these equilibrium solutions. In
some cases, we can obtain results analytically. We introduce methods to verify solutions through
analytical and numerical methods, and provide a Fourier analysis of particular results which yield
frequency spectra of quasiperiodic motions. We end by analysing the results of the two mass model
in relation to real phonation and considering how the models could be improved.



Chapter 1

Introduction

1.1 The concept and process of phonation

Phonation is a complex human mechanical process in which the vocal cords, being small regions
of flexible tissue located in the larynx, begin to vibrate as air is expelled from the lungs and lower
airway passages towards the throat and out of the mouth. As such, phonation can be regarded
as the interation of two processes in the body, being the exhalation of air from the lungs, and the
forcing of muscles in the larynx. The extremely rich and varied tones that may be produced form
the basis for the production of elongated vowel sounds.

The phonation process begins when air is expelled from the lungs. The diaphragm contracts,
applying a pressure to the lungs which causes air to be driven out. Air travels through the airways,
which have an extremely complicated, inverted tree-like structure, collecting in the bronchi (single
airway per lung) and then trachea (single airway). Now in the upper airways, the air travels upwards
from the trachea, through the larynx, and out of the body through either the nose or mouth. It is in
the larynx that the mechanical process of phonation occurs. The glottis is the opening in the larynx
between the vocal folds, hence the glottis must be open in order for phonation to occur. When air
travels through the glottis, a decrease in pressure may cause the vocal folds to oscillate. When these
oscillations occur, the propagation of the vibrations lead to the production of voiced sounds.

When the glottis closes, it may be that the vocal folds come to rest, or it could be that the glottis
collapses quickly, for example in a pattern of coughing or choking. In this case, it is important to
consider how the vocal folds might collapse but then rebound open again, and how this would occur.
The vocal folds do not deform in a linearly elastic manner [1], meaning that the rate at which they
strain is not directly proportional to the stress they are subjected to. We could imagine that on a
sudden closure of the glottis, a forcing pressure from the lower airway drives the vocal folds apart
again. Deformations of the vocal folds on collision are one of the features considered in “Synthesis
of voiced sounds from a two-mass model of the vocal cords” [2], which will be discussed more in the
section on reviewing mathematical models.

The tones produced by the oscillations of the vocal folds produce a harmonic series, which is the
nature of all pitched sounds, such as those produced by musical instruments. A harmonic series, in
this context, means that the waveform produced by the oscillations is a series on integer-frequency-
valued periodic functions, relative to a fundamental frequency. Conventionally, the mathematical
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definition of the harmonic series is the infinite sum:

Ŵ =

∞∑
n=1
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n
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+
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+ . . . .

The overtone series is the application of the harmonic series to the frequency of oscillations. If we
have a fundamental frequency ω, then we can take a series of periodic functions, in this case sine,
on integer multiples of the fundamental frequency. We can write this in series form as follows:

W (x, t) =

∞∑
n=1

an sin(ct) sin(nωx).

For clarity, W is a function on length x and time t. The wave speed c is the speed at which the waves
oscillate in time, and ω is their fundamental frequency. All frequencies nω are integer multiples of
ω. We may consider x to be bounded on an interval, such as [0, π]. In this case, we can visualise
W as a series of waves on a string. The constant coefficients an define the weighting of the linear
combination of the periodic functions. A different bias on different regions of the harmonic series
lead to different textures of sound.

When formulating mathematical models, we will make several assumptions that reduce the com-
plexity of the model, which make the process of constructing purely mathematical expressions much
easier than they would be otherwise. However, these approximations and assumptions also reduce
the complexity of the mathematics we derive, meaning we lose features that would arise from a
model that accommodates more complex features of phonation. There are two reasons we make
these assumptions. First of all, due to the scope of this project, certain features must be neglected
in order to finalise mathematical relationships that we can analyse in detail. Furthermore, we want
to prioritise certain aspects that we would expect to see from the model, which in this case is the
oscillatory motion of the vocal cords, and hence it is reasonable to neglect features that are not
directly important for this process. For example, we could neglect terms in equations if their pri-
mary importance was describing how the tension on a vocal cord affects the texture of the tone
it produces, since we are not interested in terms which give extremely precise modifications to the
oscillations.

1.2 Motivation

Models for phonation provide insight on the mechanics that contribute to real voice production.
Humans do not have conscious control over the vocal folds, rather the muscles in the larynx work
together with the exhalatory pressure from the lungs in order to induce glottal oscillations. As such,
producing a model for phonation means we can begin to understand the mechanics of the process.

Our goal is to formulate a model for phonation, which we wish to can analyse to obtain math-
ematical descriptions of real voice production. This can be divided into several sections. First,
we will briefly discuss the principles of mathematical modelling in fluid mechanics, so we have a
strong foundation before building our models. When we are constructing a mathematical model, we
will be able to understand how different assumptions in the basic fluid mechanics lead to different
components of the model. Finally, this carries through into the analysis of the model, allowing us
to make links between the results a model provides, and the mechanical properties that cause these
behaviours. If we produce a model starting with only fundamental mechanics, then we can more
easily understand which components of the model merit which features that arise in our analysis.
This means we have clear links between the physics that forms our model, and the properties of our
results.
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Once we have a model, there are many directions that can be explored to develop our study,
A mechanical model can act as a foundation for synthesis of speech [2], where we would apply
mathematical principles of sound wave propagation. Phonation is affected by plenty of factors
outside of the glottal region itself, most notably the resonance coming from the structure of the
lower and upper airways as well as the mouth. The models we explore are simplified, and more
generally study the properties of Bernoulli flow in wind tunnels. These have applications to the
study of fluid mechanics and aerodynamics of channel flows.

1.3 Modelling phonation

As discussed, we will make limitations to the mathematical models we consider, to refine the model
into something we can feasibly analyse while also gaining interesting results. First of all, while
inspiratory phonation (inspiration) differs from expiratory phonation (exhalation), we will only focus
on the expiratory flow case. In the construction of the model, the cases turn out to be identical
up to symmetry anyway. We will also simplify the geometry of a model of the larynx, reducing the
problem to the flow through a cuboid, with a vocal fold modelled by a movable wall on the side of
the channel. The motion of the wall can be restricted by Hooke springs, and we can control their
properties.

We will also assume either a steady or quasisteady flow. While it is entirely possible for the flow
in real speech to be turbulent and not steady, assuming otherwise allows us to apply Bernoulli’s
equation for a steady flow, which gives a simple yet powerful statement on the relationship between
pressure p, density ρ and flow velocity u. Restricting our investigation to incompressible fluids,
namely where ρ is constant, provides similar simplifications to our analysis.

Due to the symmetry of the vocal tract, we can simplify our analysis by only studying one side,
since accommodating both sides in our model would only provide insight under asymmetric forcing
terms or initial conditions.

Further assumptions we consider are the one-dimensional motion of the modelled vocal folds, the
elasticity being linear and modelled by Hooke springs, and a simple geometry for the vocal tract.

1.4 Literature review for mathematical models of phonation

The paper “Synthesis of voiced sounds from a two-mass model of the vocal cords” [2, 1972] is
arguably the most important work of research in the field of mathematical models for phonation. In
their research, Ishizaka and Flanagan devise a two-mass model for the vocal cords, and then compute
results to generate synthesised voiced sounds. The model consists of two masses to represent a vocal
fold, which are stiffness coupled, comprising the wall of a channel. A flow passes through the channel
and sound waves propagate from the planes, and the approximation to voiced sounds is computed
as the result of the waves transmitted.

The two mass model is an extremely simple yet insightful model, which generates behaviours of
seemingly erratic oscillations. The main body of this project is the formulation and analysis of a
two mass model.

In the mathematical study of phonation, the myoelastic and aerodynamic theories suggest the
nature of the production of voiced sounds. The myoelastic theory assumes that the vocal cords
repeatedly close, each time being driven apart by the pressure from the forced airflow from the lower
airways, and the frequency of this repeated process determines the frequency of the voiced sounds.
The aerodynamic theory instead applies the properties of pressure in a fluid flow, imposing that a
pressure drop in the glottis leads to sustained oscillations of the vocal cords. This kind of pressure
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drop is often referred to as Bernoulli pressure, which will be discussed in more depth later. It is
commonly believed that both theories are involved in the production of voiced sounds, and the ideas
are discussed by Titze in “Comments on the myoelastic-aerodynamic theory of phonation” [3, 1980].
Titze is an extremely prominent author in the field of voice and hearing in mathematical modelling.

The research paper “Theory and measurement of snores” [4, 1993] involves a model which is
not designed to approximate phonation. Rather, its purpose is to provide mechanical insights to
the factors present in obstructive sleep apnea. However, the model itself can be applied to the
investigation of phonation, being a single mass in the wall of a channel subject to stiffness and
Bernoulli pressure. One of the authors, Oliver Jensen, is the supervisor for this project.

Mathematical models for the vocal folds are often heavily simplified, and hence some features
of natural phonation are lost. In “Synthesis of breathy, normal, and pressed phonation using a
two-mass model with a triangular glottis” [5, 2011], the authors construct a model for phonation
which considers a glottis of a particular shape, which is able to close gradually. The model is able to
synthesise more modes of voiced sounds than traditional models, particularly being able to produce
the range of sounds from “breathy” speech (soft-spoken, close to whispering) to “pressed” (tense,
thin).

1.5 Principles of fluid mechanics

Euleriean fluid mechanics in a Cartesian coordinate system defines a flow u = (ux, uy, uz) in a 2D
or 3D domain, which is a function of position r = (x, y, z) and time t. We will describe the 3D case.
As well as a flow u, we have fluid density ρ and pressure p, which are often functions of position and
time. In the cases we will study, we assume the flow is imcompressible, meaning ρ is uniform across
the domain of the flow. This may appear like a restrictive assumption, but we still obtain rich and
interesting mathematical results from the analysis of an incompressible flow.

The Eulerian framework fundamentally describes the flow field, not the fluid it contains. The
change in a property • of a fluid object must be found using the material derivative

D•
Dt

=
∂•
∂t

+ (u · ∇)• (1.1)

where ∇ is the vector differential operator.
A steady flow is a flow u which is independent of time. The streamlines in a steady flow are

fixed, and are identical to the paths taken by a supposed particle placed into a flow at any time.
Bernoulli’s equation for a steady flow is as follows:

1

2
|u|2 +Ω+

∫
dp

ρ
= constant along a streamline. (1.2)

The term Ω is the potential for the body forces on the fluid, such as gravity. If the potential is either
zero or constant, then Ω cancels when applying Bernoulli’s equation since the body forces F = ∇Ω
are zero. For our research, we will assume there are no body forces and thus neglect Ω. Bernoulli’s
equation is extremely useful, since it gives us a relationship between fluid velocity and pressure in a
steady flow.

Fluid mass flux Q at a given cross-section is the rate at which fluid mass passes through the
region, given in terms of an integral:

Q = −
∫∫

A

ρu · ndS,
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where n is the outer unit normal to a cross-section. By convention, the outer unit normal points
away from the volume, hence in the opposite direction of the flow, thus we require the negative sign.
This leads to the principle of conservation of mass, where the net flux entering a volume V is the
same as the rate of change of fluid mass within that volume. The net flux is the flux out minus the
flow in. This can be formally expressed as follows∫∫∫

V

∂ρ

∂t
dV = −

∫∫
A

ρu · ndS

We can combine conservation of mass with the fact that for an incompressible fluid, the material
derivative of density Dρ/Dt is zero. We obtain an expression for incompressibility

∇ · u = 0.

In this research project, the models we will consider involve simplified geometry and more
straightforward assumptions of mechanics in comparison to some of the literature we have acknowl-
edged. Fundamentally, we want to consider a fluid flow through a rigid channel, and suppose that
a region of wall has freedom of motion in one dimension normal to the flow. It is appropriate to
introduce the definition of a plug flow, being a fluid flow through a channel in which the flow is
uniform over cross-sections through the channel. The plug flow model is a general form for the
simple geometry channel flow models we will consider throughout this project. We will only discuss
a case for a two-dimensional flow, since the intricacies are not vital to our analysis. Assume an
incompressible steady flow u(x) travels through a channel in the positive x direction and has zero
velocity in the y direction. such that the horizontal x length L of the flow is much larger than
vertical y width W . We assume the flow is uniform over a cross section. We can evaluate flux over
a cross-section with length/area A since velocity is uniform over said cross section, and we obtain

Q(x) = −
∫
W

ρu · ndS = WU (1.3)

where U = u(x) ·ex at the point in the path of the flow normal to the cross section. The elementary
vector ex is the unit vector in the positive x direction. This is assuming that the normal vector n
is in fact −ex, since this is only an example in the principle of flow in a channel. Velocity still may
change in x, for example if the flow is driven by a pressure gradient in the x direction. This gives
us a very flexible method to express the fluid flux in a rigid channel.

1.6 Principles of non-linear dynamics and dynamical systems

The modelling of phonation uses techniques from analysing systems of differential equations. The
study of dynamical systems, as far as we are concerned, involves studying systems of differential
equations that describe time-dependence in a model, and provides insight into characteristics of a
model such as equilibrium solutions and classes of behaviours. In Chapter 2, we study a single mass
model to approximate a vocal cord, and in Chapter 3 we generalise into a two mass model and obtain
a fourth order system of differential equations. In all cases the equations of motion are autonomous
and non-linear. Consider the example on two variables (x, y), being

dx

dt
= f(x, y)

dy

dt
= g(x, y).

(1.4)
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In this example, the equations are autonomous, which will be the case for all problems considered in
this report. The phase portrait is the representation in which the coordinate axes are the variables
x, y, which can be generalised to higher dimensional cases, but cannot be fully visualised for dimen-
sions higher than three. We use phase-portrait representation as an alternative visualisation of the
behaviour of a system. If a variable x is governed by an ODE, we plot its behaviour over time where
the different axes represent velocity dx/dt against position x, rather than just visualising position
against time. The phase-portrait is a useful method of representation for problems in dynamical
systems, since an ODE or system of ODEs can be characterised by the locations and properties of
its stationary equilibria. This alternative approach allows us to construct visualisations that show
some characteristics of a system more clearly, such as the radii of different closed orbits, and the
positions of equilibrium solutions. The path we visualise in the phase portrait is a curve of the
behaviour of the system parameterised by time t. Representation of solutions in the phase portrait
will be vital to our analysis of our models.

If the equations f and g are non-linear, we can’t do much to solve this equation. Aside from pro-
ducing numerical computations, we could look intuitively for equilibrium solutions (x, y) = (x0, y0),
which are fixed point solutions for which all time derivatives of x and y are zero. Hence equilibrium
solutions are equivalently solutions to the homogeneous couple f(x, y) = 0, g(x, y) = 0. Close to
an equilibrium solution, we would expect the functions’ behaviour to be well approximated by their
first order Taylor Series approximations, being

f(x, y) ≈ f(x0, y0) + (x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

g(x, y) ≈ g(x0, y0) + (x− x0)
∂g

∂x
(x0, y0) + (y − y0)

∂g

∂y
(x0, y0).

(1.5)

The constant terms disappear since f, g are zero at an equilibrium by definition. As (x, y) → (x0, y0),
the terms of order n > 1 approach zero, and the most significant terms are those involving the first
partial derivatives. We obtain the approximation for the system local to an equilibrium solution,

dx

dt
=

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0)

dy

dt
=

(
∂g

∂x
(x0, y0)

)
(x− x0) +

(
∂g

∂y
(x0, y0)

)
(y − y0),

(1.6)

which is a system of linear equations. For convenience, we make the substitutions u = x− x0, v =
y−y0 which are linear substitutions proportional to the variables of interest (x, y). Hence the above
approximation is equivalent to the following matrix equation:

d

dt

(
u
v

)
=

[
∂f
∂x (x0, y0)

∂f
∂y (x0, y0)

∂g
∂x (x0, y0)

∂g
∂y (x0, y0)

](
u
v

)
. (1.7)

Letting u = (u, v)T and writing J as the matrix of derivatives, we can write the matrix equation
compactly as u̇ = Ju, where the dot denotes the time derivative. The matrix J is the Jacobian
matrix. The Hartman-Grobman Theorem in dynamical systems tells us a very important result,
being that the behaviour of the system near the stationary point can be determined by computing
the Jacobian matrix J at the equilibrium solution, and computing the eigenvalues of the matrix.
The Jacobian is often a sparse matrix, and its eigenvalues are often complex-valued. For every
equilibrium solution, we must compute the Jacobian and its eigenvalues in order to determine the
behaviour of the system at all equilibrium points. For clarity, the eigenvalues of the Jacobian are
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the constant terms λ that solve the equation J − λI = 0, where I is the appropriate size identity
matrix. This also concerns the problem of finding equilibrium solutions in the first place, which is
usually non-trivial. Importantly, the vector u is defined on the independent variables u, v which
map one-to-one to the vectors which define the phase portrait. Hence, eigenvectors of the matrix
J are vectors in the phase portrait from equilibrium solutions, hence they affect behaviours of the
system near these stationary points.

The most important result on eigenvalues of equilibria is that an equilibrium solution is unstable
if any of its eigenvalues have positive real part. Recall that the linearisation of the system is of the
form

u̇ = Ju. (1.8)

If J has an eigenvalue λ for an eigenvector u0, then we can model the trajectory from this eigenvector
by the ODE and initial condition

u̇ = λu,

u(t = 0) = u0.

This is a first order vector ODE and has a general solution

u = Au0e
λt (1.9)

with free scalar A. Hence the value of λ determines the trajectory from the initial point u0. If λ
has a positive real part then the trajectory diverges exponentially from the equilibrium and hence
the equilibrium is unstable.

For a more rigorous understanding of the linearisation of a system of equations and an under-
standing of the Hartman-Grobman Theorem, see [6], particularly sections 1.1 on simple examples
of linear systems, 1.5 on two-dimensional linear systems, 1.9 on the theory of stability, and 2.6 on
linearisation.

1.7 Housekeeping

We will briefly discuss the notation used and any preliminary notes on methods. Within a chapter,
all notation will be almost completely consistent, however variables are not consistent across separate
chapters. For example, we use µ as a parameter for the single mass model, and denote eigenvalues
of the Jacobian with λ, however in the two mass model we use λ as a parameter and thus it cannot
be used to also denote eigenvalues, so we denote eigenvalues with σ instead.

The only significant inconsistency in our writing is when we derive the two mass model. We
denote the dimensional dependent variables h1, h2, and analyse the model to obtain the dimensionless
variables ĥ1, ĥ2. Once we have obtained the ODEs in nondimensional form, we won’t consider the
dimensional variables again, so for simplicity we change back to writing the independent variables
as h1, h2, but use them to denote the nondimensional quantities. We do the same for all the
nondimensionalised variables in the problem.

The computations in this project are all performed in MATLAB, using the 64-bit double precision
floating point arithmetic standard.

1.8 Structure

The first chapter of this project studies the single mass model from “Theory and measurement of
snores” [4], which is a model formulated to consider the factors involved in obstructive sleep apnea.
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We will find that the features derived in the model are very relevant to the investigation of phonation,
and that this single mass model serves as a strong basis for more generalised models.

In the second chapter, we generalise the single mass model into a structure in which two masses
model a single vocal cord, where the masses have a component of stiffness coupling between them.
This model builds on the single mass model, but also takes strong inspiration from the two mass
model formulated in “Synthesis of voiced sounds from a two-mass model of the vocal cords” [2],
which discusses the formulation of a mathematical model for the purpose of generating artificial
speech using a computer. The formulation and study of the two mass model is the largest and most
important part of work contained in this project. After having investigated the single mass model
and the two mass model, we will review the approximations and simplifications made during the
formulation processes and suggest refinements to the models. We conclude by discussing the results,
which are the insights to the nature of phonation that we have gained from inspecting the behaviours
of the models.
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Chapter 2

The single mass model

2.1 Principles of the single-mass model

Figure 2.1: Two dimensional schematic sketch of the single mass model. Fluid flow V travels through
the channel, and we are interested in the motion of the plate with mass m.

2.1.1 Derivation

The first model we will study is taken from Theory and Measurement of Snores [4]. It models
the inspiratory process, designed to investigate snoring as a symptom of obstructive sleep apnea.
The model proposes that the inspiratory path consists of first a region of the upper airway, which
has a given viscous resistance. Then, there is a region of a channel between two walls of given
area, where one wall is a suspended plate rather than being fixed in place. The term we wish to
investigate is b, which describes the positive displacement between the fixed wall and the suspended
wall opposite. Equivalently, b models the glottal opening. The walls themselves are assumed to
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be of equal dimensions, and behave such that the surfaces are always parallel to each other. We
impose that the plate may only move in the direction of b which is the normal to its surface, hence
b measures the only degree of freedom of the plate’s motion.

The oscillations in b that may take place, depending on conditions, is the subject of our analysis.
In the original paper, the oscillations are regarded as snores, whereas here they will be regarded as
the production of phones. The idea is the same, since the mathematical principles applied in the
definition of the model are not exclusive in any way to particular studies of sleep apnea or the like.

Oscillations are the event where, given certain constraints, b will exhibit periodic motion, regu-
larly returning to an initial position. In the model provided, indefinite oscillations can very much be
observed given the right conditions, however it is important to be aware of some properties of the
model, namely the region in which our attention is focussed. Given physical attributes are associated
with the model, and so, for example, behaviours of b when negative are ignored in the investigation.

There are three forces acting on the plate in the airway, which govern the motion we are investi-
gating. The plate is suspended in place by an elastic force Fk, namely a conventional Hooke spring
with spring constant k. This spring force suspends the plate such that it resists the closure of the
airway, so the tension force on the plate is acting tangent to the direction of positive displacement
of the plate.

Since the upper airway has a viscous resistance R to the fluid flow, this leads to a pressure drop in
the airways. An internal increase in pressure would produce an outward force on the airway, which in
this model would be tangent to the positive displacement direction. Since there is instead a decrease
in pressure, an inward force is resultant, in the direction tangent to the negative displacement. We
label this force as Fp. Pressure itself is the force per unit area, so the value of the force Fp is the
pressure multiplied by the surface area of the plate.

Bernoulli’s equation for a steady flow gives us a relationship between pressure and fluid velocity.
Assuming no body forces, the potential Ω is zero, so we can consider the flow local to the lung, and
the flow near the opening. Formally, this can be represented by the equation(

1

2
|u|2 +

∫
dp

ρ

)∣∣∣∣
in

=

(
1

2
|u|2 +

∫
dp

ρ

)∣∣∣∣
out

(2.1)

This expression can be rearranged to find an expression for the pressure. We would assume that
the fluid velocity is zero local to the lung (in), being driven by the pressure. Hence the pressure at
the opening (out) is a function of the speed local to the opening, and the forcing pressure at the
lung. Note that the term |u|2/2 is the fluid kinetic energy per unit volume. We obtain the force Fb

by multiplying this pressure term by the cross-sectional area of the plate. If this pressure is below
atmospheric, then the resulting force on the plate is acting inwards, which is the same as −Fb acting
outwards.

The governing equation of the model is derived from Newton’s second law. Given that the plate
has a mass m, we know the three forces acting on it, and so the initial equation of motion can be
expressed as

m
d2x

dt2
= Fe − Fp − Fb. (2.2)

This is not the principal equation of the model, since the terms should be nondimensionalised
and normalised. For example, x measures displacement but it is not stated under what scale.
Furthermore, the terms for the forces are all products of pressure and their dimensional properties,
meaning they measure in units that would ideally be reduced. We can normalise x by defining
b = x/x0, where x0 is an equilibrium position of the plate. The forces can be nondimensionalised by
dividing by the areas or volumes they are acting over. We will further explore nondimensionalisation
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in the study of the two mass model. Resultingly, we produce the governing equation for the positive
displacement of the channel wall from collapse at 0,

d2b

dt2
= 1− q − b− µq2

2b2
(2.3)

where µ, q are parameters linked to the properties of the fluid flow.

2.1.2 Nonlinearity

It is important to note the properties of Equation 2.3 before developing analysis. The equation
itself is a second order, nonlinear, autonomous, inhomogeneous ODE. The property of nonlinearity
is due to the existence of the µq2/2b2 term. Due to the equation being nonlinear, regular methods
for solving ODEs are far less powerful, and the properties of solutions are different to regular linear
ODEs. Most importantly, while linear ordinary differential equations often possess unique solutions
subject to boundary or initial conditions, the same does not apply in the case of nonlinear equations.

We will first demonstrate the implications of nonlinearity by attempting methods suitable for
linear ODEs, in which we do not expect to solve the ODE but instead use for demonstration. Note
the absence of the db/dt term in the governing equation. We can attempt the method of reduction
by proposing a substitution v = db/dt and forming a first order ODE. First, note that

dv

dt
=

dv(b(t))

dt
=

dv

db

db

dt
=

dv

db
v, (2.4)

and hence,

v
dv

db
= 1− q − b− 1

2
µq2

(
1

b2

)
. (2.5)

Assuming we can separate the variables, we can write an indefinite integral equation and obtain an
expression for v, namely ∫

v dv =

∫ (
1− q − b− 1

2
µq2b−2

)
db

v2 =

(
db

dt

)2

= 2b(1− q)− b2 + µq2b−1 + C1,

(2.6)

obtaining a constant of integration C1. We now have a first order differential equation on b, but
this equation is even harder to reduce or even solve, as we only have the form v2 = g(b), where
the first derivative is expressed explicitly but not linearly. Therefore, statements of existence and
uniqueness for solutions of ODEs, which we are accustomed to, do not hold in the situation where
the differential equation is non-linear.

We could have deduced this from the explicit form of Equation 2.3, but this section serves
for illustration to aid the reader’s understanding of why we cannot analytically solve this ODE.
Additionally, the equation of the form v2 = g(b) will be useful later.

2.1.3 Properties of an autonomous system

The reader may notice that the Equation 2.3 is an autonomous ODE, namely that the independent
variable t itself does not appear. If we let f be a function of b equal to the right-hand side of the
equation, we can produce a plot of the behaviour of f(b) against b. The visualisation of f(b) shows
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Figure 2.2: A plot of the function f(b) = 1 − q − b − µq2/2b2 where µ = 1, q ranging from 0.1
(orange) to 0.5 (green).

the acceleration on the plate given its position. Since the equation is autonomous, f is unchanging
in time. Figure 2.2 shows a plot of f(b) = 1− q − b− µq2/2b2 against b.

We will introduce the concept of equilibrium solutions of the ODE, being fixed-point solutions
that tell us a lot of information about the behaviour of the model. An equilibrium solution is a zero
of the function f(b), since all time derivatives of b(t) are zero if b is fixed.

This plot allows us to deduce some intuition about the behaviour of b. At a point b = b0,
the function f(b0) is equal to the outward acceleration of the plate. We can see that f tends
towards negative infinity both as b → 0 and as b → ∞, and that for certain µ, q, there is a positive
region of f . Hence if b is either small or large, it will accelerate to closure, whereas for a range of
intermediate values it may accelerate outwards instead. It is possible under certain conditions for
b to behave similarly to a harmonic oscillator, where its position and acceleration move back and
forth reciprocally.

Note that the plot of f(b) does not account for velocity. Different initial conditions could cause
b to behave differently under the same acceleration.

We will start by analysing the properties of the f(b) curve. In order for there to exist a region of
f(b) that takes positive values, the local maximum of f(b) must be greater than zero. We can take
the derivative of f(b),

f ′(b) = −1 +
µq2

b3
(2.7)

from which we can deduce that the maximum is located at the point where b3 = µq2. If we plug
this back into f , we can deduce the condition

f((µq2)
1
3 ) = 1− q − (µq2)

1
3 − µq2

2(µq2)
2
3

(2.8)

= 1− q − 3

2
(µq2)

1
3 . (2.9)

We want f((µq2)1/3) > 0. We can expand and rearrange to obtain an explicit expression, being

(1− q)3

q2
>

27

8
µ (2.10)
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Figure 2.3: The convergence of the equilibrium solutions to a single point before annihilating.
Computed by solving f(b) with Newton’s method. The parameter q is the independent variable that
governs the distance between the equilibria, while we have µ fixed.

If Equation 2.10 is satisfied, then there exists a region of f which is positive. Hence if this condition
is met then oscillations may occur. We have not yet provided the results to justify this statement,
but later on we will provide more analysis on how the values of the parameters affect oscillations.
Further on, we will be regularly making the assumption that this condition is satisfied, and hence
that oscillations can occur, in order to develop our analysis of the model.

Equation 2.10 is a result on the existence of stationary point solutions to f(b). Figure 2.3 is a
plot showing the zeroes of f(b) as the parameters change. With µ = 1 fixed, q increases until the
solutions converge close to q = 0.3 and annihilate. The solutions cease to exist when 2.10 is not
satisfied.

We can gain interesting and useful results regarding sufficient values of µ, q, most noticeably
that for any positive µ, there exists some q such that oscillations may occur. This relation is not
symmetric, since q > 1 immediately breaks the condition, for example. It is relatively simple to
deduce this, since if the 1− q term of Equation 2.10 is negative, the −3(µq2)1/3/2 term will always
be negative and thus the condition fails.

If a region of f is positive, and f tends to negative infinity when b approaches 0 or infinity, then
there must be exactly two points b1, b2 which are zeroes of f . These are equilibrium solutions.
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Formally, we are using the assumption of Equation 2.10 to solve

1− b− q − µq2

2b2
= 0 (2.11)

If the acceleration of the channel wall is positive, then the wall will accelerate outwards, however
the acceleration will have to oscillate from positive to negative in order for there to be oscillations
in the position itself. The values of b we consider are strictly positive, since it represents a distance.

2.2 Analytical methods for the single-mass model

2.2.1 First order systems

Any ODE can be written as a system of first order ODEs. We can write Equation 2.3 in the required
form as

db

dt
= b̂

db̂

dt
= 1− q − b− µq2

2b2
.

(2.12)

The variable b̂ is a substitute variable for the first time-derivative, such that this system is equivalent
to Equation 2.3. We can write this even more compactly as a single vector-valued ODE as

d

dt

(
b

b̂

)
=

(
b̂

1− q − b− µq2

2b2

)
. (2.13)

2.2.2 Representations of solutions and equations of motion

Oscillations are represented in the phase-plane as closed loops. It becomes easier to see the critical
points, namely the stationary point in the centre of the closed loops, and the inflection point between
the regions of closure and oscillation. See Figure 2.4 for a demonstration. The most common form
of the phase portrait representation that we will observe in this problem is shown in subfigure B
from Figure 2.4. Within a bounded region of b, closed oscillations occur, and outside of this we
experience eventual closure.

Recall Equation 2.3, of the form d2b/dt2 = f(b). Assume the right hand side f(b) is the derivative
(with respect to b, remaining aware that b depends on t) of some function F (b). Remaining aware
that b is a function itself of t, we have

d

db
F (b) = f(b), (2.14)

and if we differentiate with respect to t instead, we obtain

d

dt
F (b) =

dF

db

db

dt
= f(b)

db

dt
. (2.15)

From Equation 2.3, we find, on multiplying both sides by db/dt and finding antiderivatives,

d2b

dt2
db

dt
= f(b)

db

dt
(2.16)

⇒ 1

2

d

dt

(
db

dt

)2

=
d

dt
F (b). (2.17)
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Figure 2.4: A comparison of plots in the traditional distance-time representation compared to in the
phase portrait. The left column (A and C) illustrates curves as displacement against time, while the
right column (B and D) draw the same plots as shown in the respective figure to the left. Figures
in different rows show the model under different initial conditions and parameters. Figures A and
B show the displacement b with starting positions b = 0.1, b1, 0.3, 0.5, where b1 is close to the first
critical point of f . The parameters of Equation 2.3 are µ = 1, q = 0.2. Figures C and D are instead
computed with µ = 1, q = 1 with b taking initial values 0.2, 0.4, 0.6, 0.8. In all figures, b has zero
initial starting velocity.

Integrate both sides and we obtain a result that resembles an expression for kinetic energy, namely,

1

2

(
db

dt

)2

= F (b) + C, (2.18)

with constant of integration C. Variation of this constant leads to a family of solutions. Extremely
important to note is that we have an equation in terms of db

dt and b, which are the vectors defining
the phase portrait. Hence the curves that appear in the phase portrait represent all the curves that
appear for different +C.
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Notice that Equation 2.18 is of exactly the same form as Equation 2.6, which we derived earlier.
Both expressions represent families of curves in the phase-portrait. However, when reducing and
solving the ODE to derive the first order reduction, we made the assumption of separability of
variables, which is not true in all cases, whereas here we have covered a different method. In
combination of results, we will define the function F as

F (b) = (1− q)b− 1

2
b2 +

µq2

2b
(2.19)

which is not necessarily a consistent result, as discussed in the derivation, but we will use this for
verification.

We can use the plots of curves defined by Equations 2.6 and 2.18 to inspect curves in the phase
portrait. For example, we can find the particular constants C such that we generate the behaviours
at the critical points.

Oscillations occur when, for some C, the curve
(
(db/dt)2

)
/2 = F (b)+C exhibits a closed loop. It

is necessary and sufficient for there to exist a region of inflection (an interval where the derivative is
positive, elsewhere negative) in F (b) in order for this to occur. This is equivalent to the requirement
that f(b) is somewhere positive.

Interesting behaviour occurs when the local minimum or maximum of F (b) is a zero. We want
to investigate the integral curves to find the conditions required for

F (b) + C = 0. (2.20)

If µ, q satisfy the condition for oscillations to occur, it is evident that there exists a C such that
Equation 2.20 will have exactly two zeroes. The interval between these is the region in which we
observe the largest oscillation.

2.2.3 The Jacobian matrix

Recall the reduction of Equation 2.3 to a first order system in Equation 2.6. Using the function f(b)
which we have defined, the equation can be represented by a first order system as

db

dt
= b̂ (2.21)

db̂

dt
= f(b) (2.22)

We can construct an approximation for the function f(b) about a point b0 using the Taylor series
expansion, assuming differentiability on the variable b, of the form

f(b) = f(b0) + (b− b0)f
′(b0) +

(b− b0)
2f ′′(b0)

2!
+ . . . =

∞∑
k=0

(b− b0)
kf (k)(b0)

k!
(2.23)

Recall that f(b) has zeroes. If we pick b0 to be a zero of the function, then as b → b0, we can
simplify the Taylor series expansion. More precisely, since b0 is a zero of f , the f(b0) term tends to
zero. We keep the (b− b0)f

′(b0) since, while b− b0 is small, the terms succeeding it are far smaller
in magnitude. With the Taylor series applied, propose the approximation about a point b0

db

dt
= b̂ (2.24)

db̂

dt
= (b− b0)f

′(b0). (2.25)

16



Notice that this approximation is a linear system. The obtained approximation models the ODE
b′′(t) = (b − b0)(µq

2/b30 − 1). It is only valid local to points b0 which are zeroes of f , so if b − b0
grows in magnitude it is not sufficient. If we suppose a substitution of the form

X = b− b0 (2.26)

Y = b̂, (2.27)

then X represents the vicinity of b to b0, which is small, and Y is a straight substitution of the
velocity value ḃ. We can rewrite the linear system again, this time using our substituted values

dX

dt
=

d

dt
(b− b0) = b̂ (2.28)

dY

dt
=

d

dt
b̂ = (b− b0)f

′(b0) (2.29)

which can be expressed as the matrix equation

d

dt

(
X
Y

)
=

[
0 1

f ′(b0) 0

](
X
Y

)
. (2.30)

This is the Jacobian matrix for the ODE. The linearisation is of the form

dX

dt
= g1(X,Y ) = Y

dY

dt
= g2(X,Y ) = Xf ′(b0)

to represent the linear approximation of the ODE at an equilibrium b0. Then the Jacobian is the
matrix of first order derivatives of X and Y ,[

∂g1
∂X (b0)

∂g1
∂Y (b0)

∂g2
∂X (b0)

∂g2
∂Y (b0)

]
=

[
0 1

f ′(b0) 0

]
, (2.31)

which matches Equation 2.30. The characteristic polynomial for this matrix is

λ2 − f ′(b0) = 0. (2.32)

We have obtained the Jacobian matrix identical to how it was defined in our introduction, however
the problem itself is simplified from the general form we first covered.

2.3 Computational results and further analysis

2.3.1 Formulating the problem for MATLAB

We use MATLAB, primarily the ode45() function, to compute solutions numerically. However, the
governing differential equations must be provided as a first order system. We have explored first
order forms of Equation 2.3 earlier, in Equations 2.12 and 2.13. MATLAB performs a time stepping
method on a first order vector valued ODE, which is given in out case as

d

dt

(
b

b̂

)
=

(
b̂

f(b)

)
By using ode45, MATLAB performs numerical integration on all the equations in the system, thus
giving numerical solutions for b and ḃ in terms of time t, subject to initial conditions. In most cases,
we will consider the plate moving from rest (b̂(t = 0) = 0) given an initial position b = b0. All scripts
are available in the appendix of this report.
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2.3.2 MATLAB results and inspection
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Figure 2.5: Representation of all families of curves in the phase portrait representation of numerical
solutions for Equation 2.3. The parameters are set with µ = 1, q = 0.2. The critical points were
computed to be b1 ≈ 0.1795, b2 ≈ 0.7659, and have been marked.

We will first consider a range of behaviours exhibited by the model with the fixed parameters
µ = 1, q = 0.2, as used in sufigures A and B of Figure 2.4. Figure 2.5 is a plot showing all families
of curves in the phase plane for these parameters.

We can see there are four types of curve represented. Curves that cross the horizontal axis to
the left of the point b1 represent the plate travelling and accelerating (negative velocity as the plate
travels in the non-positive direction) immediately to closure. Closed loops within the enclosed region
are oscillations that continue indefinitely. Curves to the right of the closed loops represent the plate
also travelling towards closure, but undergoing a period of deceleration close to the critical value.
This leaves two others. Two separate curves emerge directly from the point b1 itself, however the
computation is incapable of computing this path exactly when we start at zero. If we start at b1 + ϵ
where ϵ is small, the solution fails to form a closed loop that returns to its start, due to the precise
behaviour of the ODE close to this critical point being subject to numerical error. Instead, this loop
is shown to slightly increment the return position positively when an oscillation has been completed.
The stationary point at b2 is the oscillation with no energy, which is similar to the other closed
loops.

We will compute eigenvalues of the equilibria with data to four significant figures, taking b1 =
0.1795 and b2 = 0.7659. We are interested in the eigenvalues of 2.30. An eigenvalue of the Jacobian
is determined by the characteristic polynomial which we saw in Equation 2.32. At b1 we have roots
at λ = ±2.4371, which are entirely real, and at b2 we have roots at λ = ±0.9544i, which are entirely
imaginary. Due to one eigenvalue of b1 having positive real part, we can deduce that b1 is an unstable
equilibrium in this case. Figure 2.8 shows the equilibrium solutions as the parameter q changes and
plots their eigenvalues in the complex plane as the equilibrium solutions converge.

In the proximity of b2, oscillations can be observed about the fixed point, but in proximity to
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Figure 2.6: Oscillations about the equilibrium solution b2 with parameters µ = 1, q = 0.1, repre-
sented in the phase portrait. Computed using a random angle and small modulus to offset initial
conditions within a small disc about b2 in the phase-plane. We always observe regular oscillations
that continue indefinitely.

b1 we can observe a variety of behaviours. Figures 2.6 and 2.7 show the behaviours local to each
equilibrium solution. We conclude that if the Jacobian has entirely real eigenvalues at a stationary
point, it is unstable, whereas if the eigenvalues are entirely imaginary (complex with zero real part)
then it is stable.

Clearly in order for a stationary point b0 to have real eigenvalues, we must have f ′(b0) ≥ 0 such
that the characteristic polynomial has real roots. If f ′(b0) = 0, eigenvalues will be zero since J is
not a full-rank matrix. This condition can be expanded and written more explicitly as µq2 ≥ b30,
which is a surprisingly simple expression.

In any case where the curve f has exactly two zeroes for positive b, we can compute these points
and the eigenvalues of the Jacobian at each. If the curve f has, instead, exactly one zero for positive
b, then the curve F (b) has a point of inflection, but its gradient (f itself, by definition) is always
negative. We require equality in Equation 2.10 for any suitable parameters, which can be rearranged
into the form

27µq2 = 8(1− q)3. (2.33)

We have no restrictions on uniqueness of solutions to this equation. Suitable real rational values
for µ, q are µ = 64/81, q = 1/3. Real rational solutions allow us to solve this case analytically. The
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Figure 2.7: Trajectories about the equilibrium solution b1 with parameters µ = 1, q = 0.1, drawn
in the phase portrait. Paths either accelerate to closure (left of the fixed point), fall into orbit
about b2 (right), or follow a path outside of the closed region of oscillations (top and bottom) before
closure. We view an extremely close image of the unstable point, showing how oscillations (right of
the stationary point) come extremely close to the equilibrium.

single equilibrium is b0 = (µq2)1/3 = 22/35/3. We can solve the eigenvalue equation as follows

det (J− λI) = 0

λ2 − f ′(b0) = 0

λ2 − f ′((µq2)
1
3 ) = 0

λ2 + 1− µq2

(µq2)
1
3

= 0

λ2 + 1− (µq2)
2
3 = 0

λ2 + 1− 24

3
10
3

= 0

λ2 =
24

3
10
3

− 1

λ = ±

√
24

3
10
3

− 1

λ ≈ ±0.7675i20
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Converging equilibrium solutions (left) and their eigenvalues in the complex plane (right)

Figure 2.8: Equilibrium solutions (left) of f for fixed µ = 1 as q changes, and eigenvalues of the
Jacobian matrix (right) as the solutions change. The eigenvalues in the right figures are always pairs
up to sign, since the equation involves the determinant of the 2×2 Jacobian matrix. The eigenvalues
of b1 are always entirely real, while the eigenvalues of b2 are always entirely imaginary. Ellipsoids
are rendered to mark the moduli of the eigenvalues for different values of q.

hence at the single equilibrium, the eigenvalues are entirely imaginary, similar to the b2 equilibrium
in the particular case we computed earlier.

2.3.3 Comparison to analytical results

The region of inital b, with zero initial velocity, for which oscillations will occur, is computed to be
the approximate interval (0.18, 1.24). We will assume Equation 2.19. If the integration constant
satisfies C = −F (b1), then the curve has exactly two positive zeroes: one being at b = b1 and the
other where b > b2 as the curve crosses the horizontal axis as it tends to negative infinity. This
means the curve F (b) is also zero at the stationary point b = b1. Hence the range of zeroes to verify
results should be the solutions to the equation F (b)− F (b1) = 0, in full

(1− q)b− 1

2
b2 +

µq2

2b
− F (b1) = 0. (2.34)

This is guaranteed to be zero at b1 ≈ 0.1795. We have the parameters µ = 1, q = 0.2
We are more interested in whether or not the other end point of the interval is consistent. The

function F (b)+C draws curves in the phase portrait. We want to consider oscillations, which require
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Figure 2.9: Plots of F (b)+C and
√

F (b) + C against b. The right-hand-side plot resembles the plots
of the model’s behaviour in the phase portrait, since Equation 2.18 gives us a relationship between
the two.

solutions to the equation

F (b) + C = (1− q)b− 1

2
b2 +

µq2

2b
+ C = 0. (2.35)

It is fairly simple to figure out that if F (b) + C = 0 is required at the stationary point b1, then
C = −F (b1) The function F (b)−F (bi) is zero at bi, allowing us to construct functions representing
the kinetic energies of a solution to the ODE, which take zero at the equilibrium solutions.

Figure 2.9 shows plots of F (b) + C and
√
F (b) + C for different constants C. The blue curve is

the line F (b) − F (b1) at the stationary point b1, and plotting its square root forms a sharp point
where it intersects with the horizontal axis. This resembles the shape of the unstable equilibrium in
the phase portrait, which we visualised in Figure 2.7.

We will now show that Equation 2.10 guarantees oscillations. Assume that f(b) is somewhere
strictly positive, which is equivalent to 2.10. We do not include the case of equality, which is where
f(b) is zero exactly once. Equivalently, F (b) has a region of inflection, since its gradient f(b) is
positive on a given interval. As shown by Figure 2.9, the curve F (b) − F (b1) is equivalent to the
closed loop in the phase portrait that starts and ends at b1. Curves F (b) − F (b1) − η, where η is
small, correspond to closed loops bounded by the curve F (b)− F (b1). For sufficiently small η such
that b1+η is contained between the zeroes of F (b)−F (b1), we have a closed loop, which corresponds
to an orbit represented in the phase portrait.

2.4 Review and motivation

The single mass model is capable of producing oscillations within a bounded region. Trajectories
converge towards the vicinity of the unstable equilibrium when they pass near the boundary for
oscillations. Close to the stable equilibrium, oscillations are periodic and regular. However, the
motions of the mass have a very simple pattern which do not relate very strongly to the complicated
nature of the mechanics of phonation. We will develop a two mass model, using the concepts we
have introduced so far, for a further study.
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Chapter 3

The two mass model

3.1 Formulating the model

Figure 3.1: General illustration of the two mass model. Plates with mass m1,m2 are connected to
the wall of the channel by springs. The fluid velocity u and pressure p are terms we can fix local
to the lung. The stiffness coupling between masses provides a horizontal force which we ignore by
restricting the masses to one-dimensional motion along the width of the channel.

We will begin to construct a model for phonation involving two stiffness-coupled masses. Due
to symmetry, we will only consider one side of the channel. We consider a steady flow u passing
through a channel, in which two masses cause a constriction to the fluid passage. Each mass mj is
indivually supported by a spring with Hooke constant kj , and a coupling spring with constant ks
connects the two masses.
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3.1.1 Fluid and solid mechanics

Figure 3.2: The single side of the model. Flux Q is of interest on the boundaries between masses,
and we can use flux to either deduce or assume relationships involving pressure and fluid velocity.

3.1.2 Modelling with unknown flux

The two mass model considers a quasisteady flow in order to simplify the relationships that determine
the fluxes at different points in the structure. However, we will first discuss a full formulation without
this assumption.

We assume that each mass moves one-dimensionally in the direction perpendicular to the dom-
inant flow. The extruding motion of each mass j into the channel is given by bj . The masses may
close to bj = h at closure, or extend outwards (increasingly negative bj) indefinitely. We assume
an incompressible fluid travels in a plug flow, which neglects the possibility of any stagnation or
interference. In the introduction we defined the concept of flux, however now we divide by rho to
give the total flow per unit volume that travels across a cross section. With a pressure driven flow,
we can fix p0 and U0, being the fluid pressure and velocity local to the lung (at x0). Hence, we can
evaluate the flux Q0 = Q(x = x0) at the lung

Q0 = −
∫∫

A0

u(x0) · n(x0) dS. (3.1)

since the velocity at x0 is scalar U0 in the positive x direction, this becomes

Q0 =

∫∫
A0

U0 dS = whU0 (3.2)

where wh is the area of A0. Since we have changing volumes, we can still maintain conservation of
mass without requiring uniform flux across the whole model. In the glottal region we have flux Qin

on the entry border of the two mass region, and Qout on the exit, with Qmid on the plane in between
the masses. The regions before and beyond the glottal opening are fixed channels, hence the flux
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is consistent in these regions and we can state that Qin = Q0 and Qout = Q∞. We then find the
velocities from the flux, by dividing by the area of the cross section

Uin =
Qin

wh1

Uout =
Qout

wh2
,

(3.3)

which gives us the fluid velocities on the borders of the glottal region. However, in order to find the
fluid velocity in the two glottal volumes, we need some kind of interpolatory flux. We will make the
assumption that the fluid velocities in their respective volumes are determined by the flux, where
we take the average flux using the borders of each region:

U1 =
1

wh1

(
Qin +Qmid

2

)
U2 =

1

wh2

(
Qmid +Qout

2

)
.

(3.4)

We can directly express a relationship between the change in the size of a volume and the change
in the volume of fluid that enters that region. First, the two glottal volumes Vj have dimensions
hjwd where hj + bj = h for j = 1, 2. Since hj is the only dimension which is not fixed, we can take
time derivatives:

V̇j = ḣjwd. (3.5)

The dot denotes explicit time derivative. We can write these in terms of the net flux, being flux in
minus flux out, in each volume

ḣ1wd = Qin −Qmid

ḣ2wd = Qmid −Qout.
(3.6)

We have deduced several properties of the velocity of the fluid through different locations in the
model, however we don’t have explicit expressions for either the plate velocities or the fluxes, which
are the key values in our problem.

3.1.3 Quasisteady flow

We will now introduce the assumption of a quasisteady flow. In this simplification, we have a
constant flux Q throughout the structure, which makes it easier to find the pressure terms that
we are interested in. In turn, we lose a lot of powerful statements from earlier. For example,
Equation 3.6 is trivialised since the fluxes cancel. We will continue our formulation of the problem,
retaining that the fluid is incompressible and driven by the forcing pressure p0 from the lung. Recall
Bernoulli’s equation for a steady flow. In order to evaluate an expression for the pressure in a
region, we need to know the fluid velocity, the body forces, and the local density. Fortunately we
have assumed incompressibility, so the density ρ is constant, and we choose to neglect body forces.
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Along a streamline, we have:

1

2
ρU2

0 + p̃0 = ρE (lower airway)

1

2
ρU2

1 + p̃1 = ρE (volume V1)

1

2
ρU2

2 + p̃2 = ρE (volume V2)

1

2
ρU2

∞ + p̃∞ = ρE (upper airway),

(3.7)

where E is the Bernoulli constant on the streamline. We can rearrange and obtain explicit expressions
for pressure, being

p̃0 = ρ

(
E− 1

2
U2
0

)
p̃1 = ρ

(
E− 1

2
U2
1

)
p̃2 = ρ

(
E− 1

2
U2
2

)
p̃∞ = ρ

(
E− 1

2
U2
∞

)
.

(3.8)

In the upper airway we have p̃∞ local to the vocal opening, hence this is atmospheric pressure,
which we will write as p̃. If we have zero fluid velocity local to the lung, and the fluid is driven by
the pressure, we have that p̃0 = ρE, and if p̃∞ is atmospheric pressure, then ρ(E − U2

∞/2) = 0 In
combination:

p̃0 = ρE =
ρU2

∞
2

(3.9)

In the regions of interest, we are concerned with the difference in pressure from atmospheric level,
which are the pressure values we actually wish to compute. We express the pressure terms as follows:

p0 = ρE− ρ
1

2
U2
0 − ρE + ρ

1

2
U2
∞ =

1

2
ρ
(
U2
∞ − U2

0

)
p1 =

1

2
ρ
(
U2
∞ − U2

1

)
p2 =

1

2
ρ
(
U2
∞ − U2

2

)
.

(3.10)

Importantly p0 = p̃0 is still the forcing term.
In a quasisteady flow, we can deduce velocities using the uniform flux Q. Equation 3.6 gave

us an expression for velocity in terms of flux and the channel dimensions, which we can generalise
outside the region of interest:

U =
Q

wh
, (3.11)

and in a region of interest we use the variable channel height instead

Uj =
Q

whj
(3.12)

for j = 1, 2.
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We now have a construction for pressure in terms of the plate displacement, thus can write the
pressure-induced force on the plate. Given j = 1, 2 :

pj = ρ

(
E− 1

2
U2
j

)
=

1

2
ρ
(
U2
∞ − U2

j

)
=

1

2
ρ

((
Q

wh

)2

−
(

Q

whj

)2
)

=
ρQ2

2w2

(
1

h2
− 1

h2
j

)
.

(3.13)

We can multiply the pressure pj by the area wd of plate j to find the force.

3.1.4 Forming the equations of motion

Figure 3.3: Illustration of the lengths b1, b2 and the springs connected to the masses. The springs
connected to the wall act as support, preventing the Bernoulli pressure drop from forcing the walls
into closure similarly to the single mass model. The coupling spring provides a stiffness such that
the two masses can be thought of as one body consisting of two components. The springs allow us
to deduce forces acting on the masses which stimulate motion by Newton’s second law.

We use linear elastic Hooke springs to model the stiffness of the walls. Support springs are similar
to the original model we have considered, however we now introduce stiffness coupling between two
separate walls. A plate j = 1, 2 is connected to the wall by a stiffness spring with constant kj . The
coupling spring has constant ks, and the resting equilibrium positions of all springs are at bj = 0.

27



The forces on a plate with position bj provide the equation of motion by Newton’s second law:

mj
d2bj
dt2

= −Fstiffness − Fpressure + Fcoupling (3.14)

for j = 1, 2. In full:

m1
d2b1
dt2

= −k1(b1 − b∗)− wdρQ2

2w2

(
1

h2
− 1

(h− b1)2

)
+ ks(b2 − b1)

m2
d2b2
dt2

= −k1(b2 − b∗)− wdρQ2

2w2

(
1

h2
− 1

(h− b2)2

)
+ ks(b1 − b2)

(3.15)

where b∗ is the resting position of both masses. The coupling term has been approximated as a linear
term on the distances between each b. We will now make a change of variables, constructing the
equivalent equation on h. This simplifies our problem, since closure at h = 0 is easily identifiable.
We will impose the resting position to be h∗ = h. Recall the definition bj + hj = h. The conversion
yields

m1
d2h1

dt2
= −k1(h1 − h) +

wdρQ2

2w2

(
1

h2
− 1

h2
1

)
+ ks(h2 − h1)

m2
d2h2

dt2
= −k2(h2 − h) +

wdρQ2

2w2

(
1

h2
− 1

h2
2

)
+ ks(h1 − h2).

(3.16)

We introduce the following parameters

h1 = hh̃1, h2 = hh̃2, t =

√
m1

k1
t̃,

α =
m2

m1
, λ =

k2
k1

, ω =
ks
k1

β =
wdρU2

∞
2k1h

and the coupled fourth-order system of differential equations can be reduced to the nondimensional
problem:

d2h̃1

dt̃2
= 1− h̃1 + β

(
1− 1

h̃2
1

)
+ ω(h̃2 − h̃1)

α
d2h̃2

dt̃2
= λ(1− h̃2) + β

(
1− 1

h̃2
2

)
+ ω(h̃1 − h̃2).

(3.17)

The two mass model generalises the concepts from the original model we investigated, and maintains
a lot of important features. Before investigating the behaviour of the coupled system of equations,
we will verify that the new model can reproduce behaviours we have already seen. Namely, if we
were to configure the problem as two equal masses with the same stiffness, and a strong coupling
between them, then we would expect the oscillating behaviour of the original model to be replicated.
We will then reduce the stiffness coupling and introduce different lateral stiffnesses for each mass,
investigating how the oscillating components affect one another in a coupled system. Finally if
we reduce the coupling to a negligible amount, we would then expect the masses to behave near
independently.

For simplicity, we will from now on refer to the nondimensional dependent variables from Equa-
tion 3.17 as h1 and h2, and the nondimensional time variable as t.
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When examining individual cases, we often refer to the parameter quadruple (α, λ, β, ω), instead
of listing each parameter individually. For convenience, computations are always performed with
initial conditions restricting the masses to rest, so the initial conditions (1, 2) mean the time-stepping
MATLAB computation starts at h1 = 1, h2 = 2 with both at rest.

3.2 Behaviours of the two mass model

3.2.1 Strong coupling
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Figure 3.4: Separate phase portrait representations of solutions to the two mass model. Parameters
(1, 1, 3, 20). High ω induces a strong coupling which replicates the behaviour of the single mass
model. Perturbations of distance of between h1 and h2 of order 10−2 induce small oscillations,
shown by the closed loops in the phase portraits which do not draw perfect circles.

We study the behaviour of two strongly coupled masses of equal stiffness, represented by α =
1, λ = 1, ω ≫ 1. The coupled system of equations in Equation 3.17 take the same form for each.
Similarly to the single-mass model, we can use the existence of stationary equilibria to determine
the potential for oscillations to occur. Imposing the existence of a stationary equilibrium solution
h1 = h2 = x imposes that

1− x+ β

(
1− 1

x2

)
= 0, (3.18)

where the coupling term cancels. The stable equilibria exist at the positive zeroes of the function
we define:

f(h) = 1− h+ β

(
1− 1

h2

)
. (3.19)

Existence of zeroes is equivalent to the local maximum, belonging at h = (2β)
1/3

being positive-
valued such that the zeroes exist, which can be written as

1− (2β)
1
3 + β

(
1− (2β)

−2
3

)
≥ 0, (3.20)

with equality if there is only one equilibrium solution. Equation 3.20 reduces to

(1 + β)3

β
≥ 27

4
. (3.21)
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Figure 3.5: Coupled oscillations under parameters (1, 1, 3, 20) and initial conditions h1 = 1.2, h2 =
3.59. The pair of masses, forced into different initial positions, oscillate about each other rapidly,
while following a dominant oscillation path.

We will reiterate that this is the condition specifically for λ = 1. When this is the case, this equation
is satisfied for all positive β > 0 and has equality at β = 0.5. If the initial conditions for h1, h2

set their individual positions between the two equilibrium solutions, provided they exist, then we
observe coupled oscillations as in Figure 3.5. The equilibria, being the solutions of Equation 3.19,
are identical for both components of the system of differential equations, provided the parameters
satisfy α = 1, λ = 1, ω ≫ 1 in order to model two strongly coupled masses. This allows us to
discuss the solutions to a single equation without loss of generality. Assuming there exist equilibria
x, we can construct the Jacobian and determine the stability local to these equilibria. We regard
the whole system with the variable h1 = h2 = h. The system of derivatives in the single case can be
written as

dh

dt
= g

dg

dt
= f(h) = 1− h+ β

(
1− 1

h2

)
,

(3.22)

which vectorises as
d

dt

(
h
g

)
=

(
g

f(h)

)
. (3.23)

Recall we have stationary equilibria which we call x. We compute the Taylor series of f(h) local to
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Figure 3.6: Plot of opposing displacements (h2 against h1). The motion is constrained within a
fixed region, however it is quasiperiodic since the oscillations will, given infinite time, fill the entire
illustrated area. Important parameters are ω = 10, λ = 0.8 so the stiffnesses are not equal and the
masses are strongly constrained together.

this point.

f(h) = f(x) + (h− x)f ′(x) + (h− x)2
f ′′(x)

2!
+ . . . =

∞∑
0

(h− x)n
f (n)(x)

n!
. (3.24)

Similarly to our earlier reasoning, we truncate the Taylor series to the first order approximation
f(h) ≈ (h− x)f ′(x), where the constant term disappears. The vectorised approximation becomes

d

dt

(
h
g

)
=

(
g

(h− x)f ′(x)

)
. (3.25)

Substituting U = h− x and V = g we obtain

d

dt

(
U
V

)
=

[
0 1

f ′(x) 0

](
U
V

)
(3.26)

We can inspect the eigenvalues of this matrix to determine the stability of the equilibrium solutions.
Having studied the single mass model, we would expect the potential for any of zero, one or two
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equilibrium solutions, with oscillations occurring in the case of two individual stationary points.
However, the model differs from the single mass model by the feature that there always exists at
least one equilibrium solution. This is because the solution (1, 1) always satisfies the differential
equations. In the section on intermediate coupling, and from then on, we will derive stronger results
on existence of equilibrium solutions.

Forcing a strong coupling replicates the behaviour of the single mass model, as shown in Figure
3.4. We have closed orbits around a stationary point, and diverging trajectories close to an unstable
point. For additional insight, we have forced minor perturbations of distance between h1 and h2 at
the initial conditions, and we observe small oscillations in the trajectories. If these paths belong to
the family of closed orbits, then the oscillations between each other may continue for an extended
period of time.

3.2.2 Intermediate coupling force, equilibria

We now develop our analysis of the two mass model by examining multiple dimensions of the
parameter space. First, we will retain the stiffness coupling ω ≫ 1, but consider the cases induced
by λ ̸= 1, which are where the relative stiffnesses for each component are not the same. We freely
change β since it is similar to a forcing term, which we can change to observe different behaviours
of the model.

In general, we observe quasiperiodic oscillating motion of the masses. We will clarify the be-
haviours that we would expect the coupled system to exhibit. Firstly, the masses may oscillate
indefinitely within a bounded region. A trivial subclass of this behaviour would be the masses
resting in a stationary equilibrium. Alternatively, we could experience closure, with or without
oscillations beforehand.

Figure 3.6 demonstrates indefinite oscillations under a high coupling force. The borders of the
shape accommodate the restrictions of the coupling force and the individual stiffness of the masses.

We would expect the equilibria instead to be the solutions of two equations for each component,
being:

f̂1(h) = 1− h+ β

(
1− 1

h2

)
= 0

f̂2(h) = λ(1− h) + β

(
1− 1

h2

)
= 0.

(3.27)

We have neglected the α term in this case since it is a scaling of the second equation and is never
0, so a zero of f̂2 satisfies our needs regardless of the value of α. The local maximum of f̂1 is at
h = (2β)1/3, and for f̂2 the local maximum is h = (2β/λ)1/3. Hence, the existence of equilibrium
solutions is expected to be determined by two assumptions, being

f̂1

(
(2β)

1
3

)
≥ 0,

f̂2

((
2β

λ

) 1
3

)
≥ 0,

where if both are satisfied, then each mass has one or two points in space where it belongs to a
state of stationary equilibrium. It is not immediately clear, but this equation is actually always
satisfied with at least equality. However, note the assumption that h1 = h2 which we made when
exploring earlier cases, which is no longer a valid assumption to make. Therefore, we cannot neglect
the stiffness coupling term, which makes it much harder to determine potential points of equilibrium
of the system. We will refer to the solutions of Equation 3.27 as the particular equilibria, while
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the actual solutions to the coupled equations will be referred to as the general equilibria. If we are
to define the properties of stationary equilibria more rigorously, we will be able to understand the
properties of the model better. We want all equilibrium solutions h1 = x, h2 = y which solve the
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Figure 3.7: Curves A (left), B (middle), C (right), representing the equilibrium solutions to the
coupled equations under separate parameters. The x and y axes are the equilibrium solutions of
f1 = 0 and f2 = 0 respectively. In all graphs, the blue curve is the family of all equilibrium solutions
for x, the red curve is the family of solutions for y, and the green line is the line y = x. Curves A, B
and C all feature parameters α = 1, λ = 0.8, ω = 0.5, changing β, where βA = 4, βB = 2, βC = 0.8
The red and blue curves intersect at points f1 = f2 = 0, which are equilibrium solutions satisfying
both equations. The points at which a curve intersects the y = x line are the points that satisfy
equilibrium of that equation, and also satisfy y = x, which cancels the coupling term. These are the
solutions of f̂1 = f̂2 = 0 which we covered earlier. Negative solutions do exist but must be ignored
since we cannot accommodate negative values for h1, h2 in the model.

coupled differential equations. From here on, an equilibrium solution is a pair (h1, h2) = (x, y). We
make the definition

f1(x, y) = 1− x+ β

(
1− 1

x2

)
+ ω(y − x)

f2(x, y) = λ(1− y) + β

(
1− 1

y2

)
+ ω(x− y).

(3.28)

Then the system we are solving can be written as

d2x

dt2
= f1(x, y)

α
d2y

dt2
= f2(x, y)

(3.29)

and we want to solve for equilibrium solutions. It suffices to solve f1(x, y) = f2(x, y) = 0 to generate
equilibrium solutions, since α only changes the equation up to scaling. An equilibrium solution is
now a pair (x, y) which solve both equations, thus the problem can be reduced to

1− x+ β

(
1− 1

x2

)
+ ω(y − x) = λ(1− y) + β

(
1− 1

y2

)
+ ω(x− y) = 0. (3.30)

Our solutions are determined by two non-linear homogeneous equations involving three parameters
(λ, β, ω), which we want to solve for two variables (x, y). This is a challenge to solve, but to start
we know from the formulation of the model and the nondimensionalisation that (x, y) = (1, 1) is
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an equilibrium solution for all values of the parameters. Solutions are found by computation via.
Newton’s method. Figure 3.7 visualises the families of solutions to the equations. The iterative
method starts by using Newton’s method to solve the separated equations, negligent of the stiffness
coupling. These individual stationary points are used as starting positions for implementation of the
MATLAB fsolve() function, solving the homogeneous equation F = [f1(x, y), f2(x, y)]

T = 0, to
find a true equilibrium solution (x, y). In most cases, there are four individual equilibrium solution
pairs to the coupled equations, being the strictly positive intersection points of the hyperbolas in
Figure 3.7. The negative regions are included in the figure for visualisation of the shape of the
curves, but the negative-valued solutions are invalid forms of equilibrium for our formulation of the
problem. We will refer to the solution pairs close to the line y = x as the diagonal equilibria, and the
other solutions as the off-diagonal equilibria. On inspection, as the extrema of the curves approach
each other, the off-diagonal equilibria converge and annihilate.

Solutions to Equation 3.30 can fortunately be computed to any accuracy we require, however
an important question involves the existence of solutions themselves. We want to know, depending
on the parameters, how many solutions exist. The equations themselves can be arranged into the
couple,

(ω + λ)y3 − (λ+ β)y2 − ωxy2 + β = 0

(1 + λ)x3 − (1 + β)x2 − ωyx2 + β = 0.
(3.31)

where each equation is linear in one variable and polynomial (a nicer form of non-linear) in the other.
Rearrange the equation linear in x to write it in terms of y and then substitute back to obtain

(1+ω)

((
1 +

λ

ω
y

)
+

β

ωy2
− λ+ β

ω

)3

−(1+β+ωy)

((
1 +

λ

ω
y

)
+

β

ωy2
− λ+ β

ω

)2

+β = 0. (3.32)

However we have to keep in mind the requirements on the variables. We must have that all param-
eters λ, β, ω are strictly positive, and likewise for x and y. Since we have eliminated x, we have
actually gained solutions, since it is possible for a solution to exist for a positive y and negative x,
which is a solution for this equation. We require the polynomial term to be strictly positive as a
qualification for solutions.

We want to evaluate the stability of the equilibrium solutions for the two mass model. We
first truncate the Taylor series of f1 and f2 about an equilibrium point (x0, y0) to the first order
approximation, yielding the equations

d2x

dt2
= f1(x0, y0) +

(
∂f1
∂x

(x0, y0)

)
(x− x0) +

(
∂f1
∂y

(x0, y0)

)
(y − y0)

α
d2y

dt2
= f2(x0, y0) +

(
∂f2
∂x

(x0, y0)

)
(x− x0) +

(
∂f2
∂y

(x0, y0)

)
(y − y0).

(3.33)

The constant terms vanish by the definition of the equilibrium solutions. Introduce u = x− x0 and
v = y − y0. Since u and x are linear in each other, there is no complication in changing between
variables for the governing equations. The same applies with v and y. The system becomes

d2u

dt2
=

(
∂f1
∂x

(x0, y0)

)
u+

(
∂f1
∂y

(x0, y0)

)
v

d2v

dt2
=

1

α

(
∂f2
∂x

(x0, y0)

)
u+

1

α

(
∂f2
∂y

(x0, y0)

)
v.

(3.34)
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Now introduce the variables û, v̂ such that du/dt = û and dv/dt = v̂. This formulates the linear
system:

du

dt
= û

dû

dt
=

(
∂f1
∂x

(x0, y0)

)
u+

(
∂f1
∂y

(x0, y0)

)
v

dv

dt
= v̂

dv̂

dt
=

1

α

(
∂f2
∂x

(x0, y0)

)
u+

1

α

(
∂f2
∂y

(x0, y0)

)
v.

(3.35)

We have obtained the Jacobian for the system, appearing in the matrix equation:

d

dt


u
û
v
v̂

 =


0 1 0 0

∂f1
∂x (x0, y0) 0 ∂f1

∂y (x0, y0) 0

0 0 0 1
1
α

∂f2
∂x (x0, y0) 0 1

α
∂f2
∂y (x0, y0) 0



u
û
v
v̂

 . (3.36)

In prior examples, the problems have involved second order systems, whereas our current problem
is fourth order, hence the 4× 4 matrix J. The definitions of these partial derivatives are as follows:

∂f1
∂x

(x, y) = −1 + 2βx−3 − ω

∂f1
∂y

(x, y) = ω

∂f1
∂x

(x, y) = ω

∂f2
∂y

(x, y) = −λ+ 2βy−3 − ω

(3.37)

We will later refer to these definitions of the partial derivatives in order to analyse the matrix J and
its properties. Eigenvalues of J are the constant terms σ which satisfy the equation J − σI = 0.
Including zero, µ always has four values for any form of J. At an equilibrium point (x0, y0), the
eigenvalues σ of the Jacobian are given explicitly by the characteristic polynomial

σ4 +

(
∂f1
∂x

(x0, y0)

)
σ2 +

(
∂f1
∂x

(x0, y0)
∂f2
∂y

(x0, y0)− ω2

)
= 0. (3.38)

3.2.3 Oscillations and closure

We provide results to explore the stability of equilibria by computing and examining behaviours,
and explore interesting behaviours that occur as a result. Figure 3.8 highlights equilibrium solutions
and the consequence of finite precision arithmetic. In Figure 3.9, by reversing the initial conditions
of the objects, the results are indicative of the behaviours in which oscillations occur.

The general behaviour of the model is for the two masses to move indefinitely in a quasiperiodic
orbit about an equilibrium solution. The motions of the masses are bounded and exhibit clear
oscillations, hence on a long time scale we can identify motion that appears periodic and stable.
However on a small timescale we observe irregularity. Irregular behaviour may or may not be
periodic in nature and we cannot determine this easily. If we observe a pattern in the data plot, we
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Figure 3.8: Computation of behaviours starting at equilibrium solutions. Parameters α = 1, λ =
0.8, β = 2.4, ω = 0.6. Initial conditions title each subfigure. We use the MATLAB fsolve()

command to find the equilibrium solutions, and the finite precision arithmetic is unable to store
their values exactly. As such, the paths eventually diverge from equilibrium in the unstable cases.

want to know if these behaviours eventually repeat themselves (periodic) or if there is an irrational
relationship between the oscillating masses and small scale irregular behaviour is never repeated,
despite appearing periodic on a large time scale (quasiperiodic). Even if we can determine the nature
of this, it may be difficult to determine whether the determined behaviour is actually in the nature
of the model, or if the finite-precision numerical computation of the model introduces irregularity.

In particular, we often observe behaviour in the plot of displacement against time which is ap-
parently quasiperiodic, where small scale irregular motions do not repeat themselves. Quasiperiodic
motion occurs in both the scale where it is an evident feature of the model, and also on the smaller
scale where it is difficult to distinguish from numerical error introducing an irregularity to the com-
putation.

It is difficult to determine whether or not we will observe closure in a computation, judging only
by initial conditions and observed features of the model. Analytically, the expression for acceleration
in the system of ODEs diverges to −∞ as either h1 → 0 or h2 → 0, due to the 1/h2 terms in both
ODEs. In order for closure to occur, one of the masses must be perturbed enough towards zero that
the system loses stability and collapses. There is often a bound for oscillations, within which the
quasiperiodic orbits will continue indefinitely.
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Figure 3.9: Reversing the initial conditions of Figure 3.8. The right-most subfigures are of most
interest. In the case of initial conditions (3.58, 3.33) we have oscillations that appear regular, but in
the initial conditions (0.86, 2.11) the behaviours are much more irregular. The purpose of this figure
is to show that equilibrium solutions are rarely symmetric, and reversing the initial conditions leads
to fundamentally different results.

3.3 A collection of results

In general, equilibrium solutions are not affected by the mass quotient α, so in most cases α = 1 for
simplicity. For readability, numerical values will be given to two decimal places.

3.3.1 Four stationary points

Consider the parameter configuration (1, 0.8, 3, 0.3), where we have a difference in stiffness and a
smaller stiffness coupling. There are four equilibrium solutions. The diagonal equilibria are (1, 1) and
(3.94, 4.39), and the off-diagonal equilibria are (0.88, 3.47) and (3.03, 0.90). With the Jacobian as in
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Eigenvalues of equilibrium solutions, mapped in the complex plane, in the case of parameters (1, 0.8, 3, 0.3)

Figure 3.10: Plots in the complex plane of the eigenvalues of equilibrium solutions, in a particular
case where four such solutions exist. The diagonal solutions provide eigenvalues that are either
entirely real or entirely imaginary, while the off-diagonal solutions provide pairs of real and imaginary
eigenvalues.

Equation 3.36, the diagonal solution (1, 1) has entirely real eigenvalues, and (3.94, 4.39) has entirely
imaginary eigenvalues. Each off-diagonal solution has a combination, with one pair of eigenvalues
being entirely imaginary and the other being entirely real. See Figure 3.10 for a visualisation of
the eigenvalues for the steady solutions in this example. We can see that all equilibrium solutions,
except for (3.94, 4, 39), bear an eigenvalue with positive real part, and are thus unstable.

The existence of four equilibrium solutions is the most common case we observe with the model.
Continuous orbits may occur which run indefinitely, with small scale quasiperiodic behaviour, similar
to the behaviour shown in Figure 3.13.

See Figures 3.11 and 3.12. In the former, the shape of the curve indicates quasiperiodic orbits.
The behaviour of the curve is almost periodic, since the path taken in this representation are regularly
repeated up to a small difference. The latter shows time series and phase portrait representations
of another behaviour in this parameter configuration. We can identify quasiperiodicity from the
visibly repeating pattern in the time series, and the clearly outlined distinct orbit cycles in the
phase portrait.

The model often exhibits continuous coupled quasiperiodic orbits. Under the motivation of
understanding voiced sounds from a mathematical model, we can claim that this resembles the
complex structure of the tones produced from the vocal folds.
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Figure 3.11: Distance plot of h2 against h1 for t = 100. In the parameter configuration (1, 0.8, 3, 0.3),
with initial positions (3.39, 3.94), it is possible to obtain results that very closely resemble periodic
orbits. Over long time span computations with low tolerance, the orbit may diverge from the curve
shown and eventually fill a bounding rectangle. Later on, we will provide analysis of the reliability
of results.

3.3.2 Converged stationary points and fundamentally different solutions

In the case where the parameters take the values (1, 0.3, 1, 0.8), then we have exactly two equi-
librium solutions, being (1, 1) and (2.15, 2.62). The solution (2.15, 2.62) is stable, with eigenvalues
±1.47i and ±0.67i all being entirely imaginary. However the solution (1, 1) has eigenvalues ±1.19
and ±0.57i, with one eigenvalue with positive real part. The case of exactly two equilibrium solu-
tions does not yield fundamentally different results from when four are present. See Figure 3.8 and
look at the particular cases of the off-diagonal equilibria, which disappear in the case of two station-
ary points. In the case shown, these equilibria are so unstable that machine precision struggles to
maintain their stationary nature and they soon diverge. Since the off-diagonal equilibria converge
onto the solution (1, 1), the affect of any unstable equilibria on the problem is entirely on this single
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separated orbits in time series and phase portrait representation. params (1, 0.8, 3, 0.3), initial positions (3.79, 4.57)

Figure 3.12: Time series and phase portrait representation of a clearly quasiperiodic pattern. Com-
puted under parameters (1, 0.8, 3, 0.3) with initial positions (3.79, 4.57). Orbits are represented in
the phase portrait by distinct closed loops, and the pattern of oscillations always moves between
loops in a consistent pattern. The orbits are bounded and their regions of distance are disjoint.
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Figure 3.13: Time series of h1 (blue) and h2 (orange). Computed with parameters (1, 0.8, 3, 0.3)
with initial positions (1.80, 3.79). Quasiperiodic motion, with regular shape of oscillation orbit, but
irregular motion.

point. The appearance of the diagonal equilibria in Figure 3.10 are similar to this case.
In the case of exactly one equilibrium solution, we can say with certainty that it is the solution

(1, 1), which is always a solution to the model under all parameters. The consistent single equilibrium
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Figure 3.14: An interesting result in time series, opposing displacement and phase portrait represen-
tation. We set parameters (1, 0.5, 3, 0.3) and intitial conditions on the plates (1, 3.79). We observe
a nested pattern of orbits, where there are three distint circles in the phase portrait for each mass
and we move between orbits in a regular pattern.

solution (1, 1) has a unique property, in which it is the only equilibrium solution of the model where
the stiffness coupling terms always cancel. In cases with more than one solution, the other diagonal
equilibrium solution may be a solution (x, x) for x ̸= 1, but this is not guaranteed. The conditions for
oscillations, which we explored in Equation 3.27, give us the conditions β = 0.5, λ = 1 to guarantee
the existence of exactly one equilibrium solution. The value of ω is unrestrained, since the stiffness
term itself is cancelled by the solution at (1, 1) being the only solution to the equations.

Consider the configuration of parameters (1, 1, 0.5, 2), which guarantees the existence of the
single equilibrium solution (1, 1). Results show that the eigenvalues of the Jacobian matrix are
the complex conjugate pair 0 ± 2i and the repeated solution 0. The zero eigenvalue is unique to
particular choices of the parameters. Note the partial derivatives used in the Jacobian, for which
the definitions are given in Equation 3.37. If β = 0.5 and λ = 1, then at (x, y) = (1, 1), the Jacobian
from Equation 3.36 becomes

J =


0 1 0 0
−ω 0 −ω 0
0 0 0 1
ω 0 ω 0

 ,

and this is not a full rank matrix, hence the zero eigenvalues.

3.3.3 Unique behaviours

We can generate a particular case under parameters (1, 0.5, 3, 0.3) which produces extremely in-
teresting images. Figure 3.14 shows multiple representations of a computation, where the phase
portrait shows nested cycles. Each plate h1, h2 has three orbits in the phase portrait of distinct
radius. However, the regularity in which each plate passes into each orbit is consistent, as shown
by the opposing displacement plot. The opposing displacement plot itself is of high interest since it
draws a bounded region of the orbits.

We will explore extended behaviours of this example, as well as others, later on when discussing
verification of energy. For now, briefly see Figure 3.16. The two plates oscillate around the equi-
librium solution (4.31, 5.88). In this case, the eigenvalues of this equilibrium can be computed at
±1.17i and ±0.79i, which are purely imaginary. This case is similar to the eigenvalues of equilibria
represented in Figure 3.10. All eigenvalues belong to the same regions of the complex p
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3.4 Verification of results

Numerical methods do not provide exact results and it is very easy to produce results which seem
plausible but are fundamentally wrong. We will introduce a few concepts that will allow us to verify
solutions. Most results from the two mass model will be unreliable if the tolerances are not strict
enough. See the appendix for a review on unstable results.

3.4.1 Numerical methods
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Convergence to a consistent result under reducing tolerance. Parameters (1,0.8,3,0.3), initial positions (3.79,4,57)

Figure 3.15: Results converging to a consistent solution. Under stepping down the tolerance AbsTol
from 10−5 to 10−20, we maintain consistent results in this case. Computed under parameters
(1, 0.8, 3, 0.3) with initial positions (3.79, 4.57) visualising displacement of h1 only In MATLAB,
the tolerance AbsTol can be set arbitrarily, however extremely small tolerances are infeasible and
fail to provide any solution at all.

One concern in compuation is the existence of numerical error. It is possible that the discreti-
sation could induce a local error to the numerical solution and this small difference could lead to a
divergence in the result.

The ordinary differential equation solvers in MATLAB feature options which can be modified
using the odeset struct. We are particularly interested in the parameters AbsTol and RelTol, which
affect the precision of the numerical solution [7]. The value for AbsTol gives a lower bound on the
magnitude of the solution, encouraging the timestepping algorithm to remain above a particular
magnitude. If the solution approaches zero asymptotically, this will reach a point where the solver
fails. The RelTol term instead controls a termwise precision of the solution, comparing a term in
the timestep to an immediately previous solution. If we decrease RelTol, the numerical values will
be closer to the exact solution for our initial conditions.
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The differential equation solvers in MATLAB implement Runge-Kutta methods of different order
[8]. For example, ode45() applies one method where the error is order O(h4) and another with error
of order O(h5), where h is the length of a time step. If we wish, we can implement a different solver
such as ode89, which uses methods of eighth and ninth order error. These solvers are extremely
accurate when the time steps are suffiently small, however they are also extremely computationally
expensive. The sufficient method for computations in our case is to use ode45, where we step down
AbsTol and RelTol as required. In MATLAB, error is estimated by the difference in magnitude
between two numerical solutions, which is assumed to be greater than the error from one method
to the exact solution.

3.4.2 Energy of the system
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Figure 3.16: Attempting to verify the result of nested orbits we have seen in Figure 3.14. The upper
plot shows the same time series truncated at t = 3000. The lower plot uses the energy constant
defined in Equation 3.39. The energy constant accrues miniscule error from the initial conditions
over the time span of the computation.

We can also find a method of verification which relates to the energy of the system. Recall
the equations of motion which are given by Equation 3.17. We want to rearrange these equations
and integrate, similar to what we did in the previous section, in order to find an expression that
resembles the kinetic energy of the system. First, we will write u = h1, v = h2 for convenience, and
express the equations of motion in the form

d2u

dt2
= 1− u+ β

(
1− 1

u2

)
+ ω(v − u)

α
d2v

dt2
= λ(1− v) + β

(
1− 1

v2

)
+ ω(u− v).
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Figure 3.17: Second verification via energy constant. Parameters (1, 0.8, 3, 0.3) with initial positions
(1.80, 3.79). The computation still diverges over time, although energy is lost very slowly. Under a
strong enough tolerance, results can be reliable for very long time spans.

Define functions f̂ and ĝ as follows

f̂(u) = 1− u+ β

(
1− 1

u2

)
ĝ(v) = λ(1− v) + β

(
1− 1

v2

)
.

Now define functions F and G

F (u) = u− 1

2
u2 + β

(
u− 1

u

)
G(u) = λ

(
v − 1

2
v2
)
+ β

(
v − 1

v

)
.

These functions satisfy dF/du = f̂(u) and dG/dv = ĝ(v). We can write the system of differential
equations in the form

d2u

dt2
= f̂(u) + ω(v − u)

α
d2v

dt2
= ĝ(v) + ω(u− v).

We will perform a rearranging of the expression on the second derivative of u, but we will not go into
detail on the derivation for the second expression, since it is virtually identical. First, we multiply
the whole equation by the first derivative of u with respect to t,

du

dt

d2u

dt2
=

du

dt
f̂(u) + ω

du

dt
(v − u).
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Figure 3.18: Third verification via energy constant. Parameters (1, 0.8, 3, 0.3) with initial positions
(3.79, 4.57). Regular orbits in disjoint bounds. Under particular initial conditions, parameters, and
time span, tbe system maintains a regular behaviour for which the energy constant is approximately
maintained. See that the value of the energy constant does not change up to the first two decimal
places. We have restricted the time span of the computation to force that the solution is more
reliable than other results.

This expression can be written mostly as derivatives, equivalently,

d

dt

(
1

2

(
du

dt

)2
)

=
d

dt
F (u)− ω

d

dt

(
1

2
u2

)
+ ωv

du

dt
.

Applying the same method to the second equation, we obtain

d

dt

(
1

2
α

(
dv

dt

)2
)

=
d

dt
G(v)− ω

d

dt

(
1

2
v2
)
+ ωu

dv

dt
.

We would like to take the differential operator out of all the terms, but there are still mixed terms
of u and v that make this difficult. However, if we take the differential operator out of all the terms
where we can, and ignore the mixed terms, we can add both expressions and obtain

d

dt

(
1

2

(
du

dt

)2

+
1

2
α

(
du

dt

)2
)

=
d

dt

(
F (u) +G(v)− ω

2
u2 − ω

2
v2
)
+ ω

(
u
dv

dt
+

du

dt
v

)
.

In adding both expressions, the mixed terms add together and form an integrable expression. The
expansion is given here:

d

dt
(ωuv) = ω

(
u
dv

dt
+

du

dt
v

)
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Hence the whole expression under the differential operator can be written as

d

dt

(
1

2

(
du

dt

)2

+
1

2
α

(
du

dt

)2
)

=
d

dt

(
F (u) +G(v)− ω

2
u2 − ω

2
v2 + ωuv

)
and if we integrate the expression, and rearrange slightly, we obtain

1

2

((
du

dt

)2

+ α

(
dv

dt

)2
)

= F (u) +G(v)− ω

2
(u− v)2 + C. (3.39)

This equation gives us an expression on the values u, v, du/dt and dv/dt, which are the values we
compute solutions of, and relates them to a constant C. This is an energy constant similar to what
we derived in the earlier section on the single mass model. Since the constant is unchanging in time,
we can use it to verify that a computed solution is reliable by evaluating C at multiple points in the
time span of the computation. Figure 3.16 shows an attempted verification of a result using this
constant. Due to the nature of the integration method, the energy constant accrues error over the
time span of the computation. The computation of the energy constant forms a smooth line, since
a small error accrues over the time span of the computation. In this figure, as well as Figures 3.17
and 3.18, we show verification of behaviour through computing the energy constant.

In our computation, even when the tolerances are extremely small, the evaluations of the energy
constant will always diverge slightly. This occurs since the error of the numerical method is small
but finite, so an error accrues in the energy of the system. Our criterion for a reliable solution is for
the energy constant to be exact up to four decimal places. When producing Figures 3.16, 3.17 and
3.18, we have restricted the tolerances such that the solutions meet this criterion, so that we can
claim these results are reliable.

3.4.3 The Poincaré map

Because the form of the problem is fourth order, the problem can be analysed as the behaviour of
an object in four dimensions. The methods in which we have represented solutions graphically are
simplifications, where the four-dimensional behaviour is projected onto a two-dimensional image.

The Poincaré map is a useful technique we can use to analyse the behaviour of a system. First, we
construct the Poincaré section, which is an n−1-dimensional subspace in the space that contains our
solutions. Another name for this type of subspace is a hyperplane. For a two dimensional problem,
the Poincaré section is a line and for our current four dimensional problem it is a three-dimensional
space. The Poincaré map is the visualisation of the solution every time it intersects with the Poincaré
section. This can be used to assess quasiperiodicity or chaotic nature of dynamical systems.

In our case, we will consider the four dimensional problem as two separate two-dimensional
problems, which makes it easier to demonstrate the result. We are essentially reducing the two
mass model into two single mass models while acknowledging the coupling between them. For our
computations, the respective Poincaré sections for each mass are the lines in the phase portrait
where their velocities are zero.

For the case of separate bounded continuous quasiperiodic orbits depicted in Figures 3.12 and
3.18, we can construct the Poincaré map and analyse it in the context of the model. Figure 3.19
visualises the Poincaré map for this problem. We see the intersection points begin to diverge as the
computation continues, shown in the visualisations that include the transient. However, these diver-
sions are small and the intersection points are mapped in clearly bounded regions. The diversions
shown in the Poincaré map could be attributed to the small but finite numerical error present in the
computation.
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Poincare map with and without transient for the quasiperiodic nested orbits under parameters (1, 0.8, 3, 0.3) with intial positions (3.79, 4.57), up to time t=500

Figure 3.19: The Poincaré map for the orbits represented earlier in Figure 3.12. Parameters
(1, 0.8, 3, 0.3) with initial positions (3.79, 4.57). The chosen hyperplane is the respective line where
velocity is zero. The first plot is the Poincaré map for h1 intersecting the line dh1/dt = 0, where v+
indicates approaching the line with positive velocity and v− is similar for where velocity is negative.
We can identify the intersection regions from the visualisation in the phase portrait in Figure 3.12.
The transient is where we have plotted the intersection points against the order in which they were
computed.

The method used to compute the Poincaré map [9] constructs a new array of time points Tn of
intersections with the Poincaré section, hence the figures do not plot to the same time scale as the
original computations.

We have performed a similar computation of the Poincaré map in Figure A.5, for a case we
have explored earlier. The points on the Poincaré map are much more irregular and break out of
a pattern approximately halfway through the visualised computation. This result is not reliable,
justified again by the large scale of change in the energy constant we computed earlier in Figure
3.16.

A regular Poincaré map is a strong indicator that the model exhibits a consistent behaviour,
even if that behaviour is extremely complex and difficult to analyse from simpler visualisations.

3.5 Voiced sounds

We can generate playable sound files in .wav format of the time series computations and we can
play these back to hear our results. Sound files are generated by interpolating the time series into
an array with uniform timestep, normalising the range to [−1, 1] and then using the audiowrite()
function in MATLAB to write the array to a .wav file. We generate two separate audio files for the
motion of each mass. Playable sound files are available here1, with three results each containing a
time series graph we have shown, and two playable sound files for each mass.

1https://gitlab.com/willwoolfenden/undergraduate-project-2223-phonation
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Figure 3.20: Fourier transforms of time series data from same conditions as Figure 3.18, with
extended time span. The left figure is the motion of h1 and the right is h2, with parameters
(1, 0.8, 3, 0.3) and initial positions (3.79, 4.57). We can identify similar spectra of different magnitude,
particularly three distinct spikes with the middle value being the most powerful.
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Figure 3.21: Fourier transforms of time series data instead from Figure 3.17, again with extended
time span. Presentation is identical to the prior figure. Parameters (1, 0.8, 3, 0.3) and initial positions
(1.80, 3.79). The time series of this result shwos quasiperiodic orbits with displacement bounds that
intersect, as seen in the figure mentioned. The dominant frequencies of oscillation are close together,
but the weighting of these frequencies is extremely different in both.

A Fourier transform [10] can be applied to the original time series data to provide information
on the frequencies of the oscillations. Figures 3.20, 3.21 and 3.22 apply the transform to data we are
familiar with, having extended the time scale. Frequency space is computed as the n points in the
time array divided by the total time span. Since the time series data is produced by a non-uniform
timestep, we use the nufft() function in MATLAB, which is a non-uniform fast Fourier transform
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Figure 3.22: Fourier transforms of extended time series data from Figure 3.16. Vertical axis is the
power of frequencies on the horizontal. Frequency ranges from 0 to n/T where n is the number of
time points and T is the end time of the computation. We computed the solution initialised with
parameters (1, 0.5, 3, 0.3) and initial positions (1, 3.79). The continuous quasiperiodic orbits provide
a far richer visualisation than the prior two examples, where we can identify clusters of frequencies
rather than distinct single spikes of intensity.

algorithm that requires the time series array and the time array as arguments. We apply the Fourier
transform to the positions of h1 and h2 in the time series.

The frequency domain is not computed by the nufft() Fourier transform algorithm, rather it
must be computed separately. The domain for frequencies is the sequence 1/T, 2/T, . . . , N/T , where
T is the end time of the computation and N is the number of time points in the array. The
entries range from f = 1/T, i.e. an oscillation occurs once in the computation, to f = N/T , i.e. an
oscillation occurs N times in the computation. In practice, f = N/T is impossible in a computation,
since N oscillations cannot be stored in N time points. In practice, we tend to only consider the
frequencies from 1/T to N/2T .

On long time scales, solutions may diverge from a consistent behaviour if we do not control the
tolerance of the numerical solver. The results provided are computed with the settings AbsTol =
10−40 and RelTol = 10−12. The Fourier transform graphs are all results which have been studied
earlier and are all available in the repository.

In all the Fourier transform visualisations we have available, we can identify similar spectra
between the masses. Figures 3.20 and 3.21 visualise frequency spectra with discrete spikes. The first
plot shows the two masses oscillate with identical frequencies, and the strength of these frequencies
are very close in both. In the second, smaller spikes in frequency information do appear more often,
which can describe more complex behaviour of the masses. In Figure 3.22, the spectral information
is much richer, where frequencies cluster together instead of being distinct spikes. The form of this
Fourier transform representation describes much more complex motion of the masses than the other
cases we have shown.
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3.6 Review

Evidently, a two mass model produces far more insightful results, which reflect the intricate quasiperi-
odic oscillations that take place in real phonation. We will now conclude our analysis, review po-
tential improvements to our models, and discuss our findings collectively.
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Chapter 4

Critique of the models, overview of
results and conclusion

4.1 Improving our models

4.1.1 Energy

Both the single mass and the two mass model are systems which perfectly preserve energy. This is
not consistent in the computations, but we have shown for both models that there exists a constant
term, depending on the variables of position and velocity, which is unchanging in time. From a
realistic perspective, systems tend to dissipate energy and eventually come to rest, rather than
behaving like perfect conservative machines that operate indefinitely.

Both models we have studied lack any form of damping, so all potential energies are perfectly
transferred to kinetic energies and vice versa. If we were to introduce a damping parameter, we
would observe closed oscillations about a stationary point to always converge to that equilibrium,
rather than oscillating indefinitely.

A mass m attached to a Hooke spring obeys the ODE

m
d2x

dt2
+ k(x− x0) = 0

where x is the length of the spring, x0 is the length at rest, k is the stiffness, and t is time. This
is the equation for a simple harmonic oscillator, with equilibrium solution x = x0. The general
solution is the expression

x = x0 +A exp

(√
− k

m
t

)
+B exp

(
−
√
− k

m
t

)
,

where A and B are free constants. With the inclusion of a damping parameter, we obtain a different
ODE

m
d2x

dt2
+ c

dx

dt
+ k(x− x0) = 0

where the constant c describes the damping strength. We retain the equilibrium solution x = x0,

51



but the general solution changes to

x = x0 +A exp

(
−c+

√
c2 − 4mk

2m
t

)
+B exp

(
−c−

√
c2 − 4mk

2m
t

)
.

We require m, k, c to be positive constants. The harmonic oscillator is periodic, whereas the
damped harmonic oscillator eventually decays to rest at the equilibrium.

Our models describe systems where energy is perfectly transferred between useful forms, namely
potential and kinetic energies. In other words, the systems we study have 100% efficiency. In reality,
there are virtually no dynamical systems with this level of efficiency, rather that some energy is always
wasted. If would be interesting to develop our models by introducing forms of energy dissipation,
such that our models would not describe systems which are 100% efficient. We could then consider
how the forcing pressure could adapt to continue phonation to take place when the motion of the
vocal cords begins to decay towards equilibrium.

4.1.2 Elasticity

From studies into the material properties of the vocal cords, they have been observed to deform
under stress with nonlinear elasticity [1]. However, in the models we have studied, the stiffness
of the vocal cords are modelled with linear elasticity by a Hooke spring. It is important to note
that in the two mass model, we simplified these assumptions further, by approximating the stiffness
coupling by a linear force, rather than as the vertical component of a diagonal spring.

The purpose of our mathematical models are to describe the potentially intricate motion of
the vocal cords. In order to do this, we used Hooke springs to model the stiffnesses. While not
ideal, these are fundamental to the quasiperiodic behaviours we observed in the two mass model. If
we considered non-linear stiffnesses, these might provide fundamentally different oscillations to our
observations. However, our analysis does not extend to the impacts of different spring behaviours on
the results. Rather, we made the approximation of linear Hooke springs and analysed their impact
in depth.

It also serves to mention that the linear Hooke spring is a first-order approximation to the
stiffness of a real spring. As such, it is reasonably accurate for small displacements, which occur in
the proximity of stable equilibria, being a large portion of our analysis.

4.1.3 Stablility of fluid flow

In both models, we applied Bernoulli’s equation for a steady flow in order to deduce a relationship
between the velocity and the pressure of the fluid. It is possible for the spoken sounds in phonation
to be produced by a steady flow, but phonation can occur more generally for unsteady, turbulent
flows, and this is not a case which is accommodated in our modelling.

In the two mass model, we forced the assumption of a quasisteady flow, however this reduced
the cases we accommodated in the modelling. Ideally we would construct a model which provides
accurate simulation of vocal folds moving, subject to a turbulent flow through the glottis. However,
the quasisteady flow still provided rich results which led to a wide variety of behaviours which we
were able to analyse. Were we to develop the model and introduce the non-steady flow, it would
be very important to replicate results from the quasisteady flow assumption. This is because if a
model cannot retain a result when a component changes, then there may be something fundamental
to that original component, which we have now lost. As such, it was important to focus on the
quasisteady flow assumption, even if this does not capture the range of flow types that may be
involved in phonation.

52



When we began to discuss the two mass model, we introduced relationships between the fluxes
and the velocities of the masses. We supported these suggestions with the argument of conservation
of mass for an incompressible fluid. However, the quasisteady flow was a stronger assumption which
neglected these rules. If we were to develop the model, these assumptions on the flux would be
good candidates to involve in the modelling. The quasisteady flow implies “change in volume =
change in flux” for any fixed volume.

4.1.4 Physical structure of the model

The formulation of the two mass model involved extremely simple geometry, being the flow through
a rectangular channel. A more varied and irregular structure, similar to the interior shape of the
larnyx and glottis, could potentially influence the dynamics of the fluid flow. A varying inner channel
width could have implications in Bernoulli flow, and could contribute to more complex flow patterns
in phonation.

The masses which model the vocal cord are extremely simple objects, being stiffness-coupled
planes, and are restricted to one dimensional motion in the direction of their ourward normal.
In reality, the vocal folds have a much more intricate shape than the cuboid blocks we modelled
them as. We could develop the two mass model by constructing the vocal fold with a much more
gemoetrically complex shape, and allowing more degrees of freedom in their motion. This would
lead to more complex behaviour in the motion of the masses, but it would be difficult to recover
results from the simpler model which we have analysed. This is because the ODE we have analysed
in the two mass model is characteristic of the one dimensional motion. If we were to remove this
restriction, we would obtain a system of PDEs describing motion in more than one degree of freedom,
and it would be difficult to replicate the one dimensional results from our two mass model.

4.2 Discussion

4.2.1 Aims

In this project, we aimed to explore mathematical models for phonation, and analyse the charac-
teristics that they can produce. We began by exploring a single mass model from a research paper,
and derived results on its behaviour. We explored equilibrium solutions and criteria for closure.

We generalised the properties of the single mass problem into a model involving two separate,
stiffness-coupled masses. We analysed distinct behaviours of the two mass model, again investigating
equilibrium solutions. We investigated the complex shape of the motion of the masses, and performed
computational Fourier analysis on different results to provide insight into the frequencies of the
oscillations.

4.2.2 The single mass model

The single mass model exhibits oscillations when parameters take suitable values. Orbits oscillate
about a stable equilibrium b2 in the phase portrait. In the proximity of the unstable equilibrium
b1, orbits will gravitate towards the unstable point. Trajectories near b1 outside the bound for
oscillations will diverge from this unstable point and eventually reach closure.
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4.2.3 The two mass model

We constructed the two mass model by generalising the single mass model, but we chose to cover
the formulation of the model from scratch. Two masses are given a coupling stiffness, and we aim
to produce more complex dynamics with the two mass model.

The two mass model always retains at least one equilibrium solution. Strong stiffness coupling
between the masses can replicate the structure of solutions for the single mass model. In most cases,
we can observe four separate equilibrium solutions for the system. Results such as the equilibrium
solutions themselves, and the eigenvalues of the Jacobian local to these points, must be computed
numerically. Some equilibrium solutions are often unstable and so precise that a computation at these
equilibria eventually diverges into large oscillations. The motion of the masses is often quasiperiodic,
following one or several dominant frequencies of oscillation.

We could verify results by deriving an energy constant for the system from definite integration.
This energy constant was used to verify the reliability of results.

Finally, we performed Fourier analysis on a selection of results in order to analyse the frequency
space of the quasiperiodic motion. We were able to analyse the spectra of the oscillations, where
some results showed clear discrete peaks in the frequency space, but others showed more continuous
ranges of oscillation frequencies.

4.2.4 Equilibrium solutions

The existence of equilibrium solutions suggests that, during phonation, the vocal folds can remain
in fixed positions under particular forcing terms. The nature of stable and unstable equilibria imply
different relationships between forces local to these points. An unstable equilibrium suggests that
a vocal cord may remain in a fixed shape under a precise balance of forces, and will diverge from
this position when offset even slightly. However, a stable equilibrium implies that if energy were to
slowly dissipate from the system then a vocal cord will come to rest at a fixed position.

The two mass model yields different kinds of equilibrium solutions. We defined two categories,
being diagonal and off-diagonal equilibria. The diagonal equilibria are stationary points where
both components of a vocal cord are close together. When a diagonal equilibrium is unstable,
the components of the vocal cord start close together but are sensitive to initial conditions, and if
their positions are offset slightly then they will diverge into their own quasiperiodic motions like we
observed. If the point is instead stable then a slight offset leads to continuous small oscillations. The
off-diagonal equilibria are points where the components of a vocal cord have a significant distance
apart from each other, so the stiffness coupling induces tension which is balanced by the Bernoulli
flow and individual stiffnesses. We have no results where the off-diagonal equilibria are stable,
instead we have observed that the component positions diverge when slightly offset. In fact, these
are so sensitive to position that the machine arithmetic used in our computations is not precise
enough to store variables that maintain equilibrium. The eigenvalues of these equilibria are entirely
imaginary in all cases we have considered.

4.2.5 Quasiperiodic motion

We analysed the Fourier spectrum of the motion of the two mass model, showing that the motions
are formed from a harmonic series of frequencies. Different Fourier spectra indicate different combi-
nations of the harmonic series, which produce different textures of sound. This analysis applies most
naturally to pitched sounds, such as the tones produced by musical instruments. If, for example, we
recorded a violin and a clarinet both playing exactly the same note and performed Fourier trans-
forms on the data, we would observe vastly different frequency spectra with the same fundamental
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frequency. Singing is an example of phonation producing pitched sounds, however natural speech
also has pitch and timbre formed form a harmonic series. Hence, we can apply the Fourier transform
to analyse the frequency spectrum. From our results, we deduced that the two mass model is capable
of producing a range of sound textures from the range of unique frequency spectra we observed.

4.2.6 Collapse

The collapse of the glottis in regular phonation leads to the airway becoming blocked and building
up pressure. In our analysis, however, closure is considered to be a stopping condition and hence we
do not explore behaviours after collapse. The single mass model accommodated for the possibility
of no equilibrium solutions, and in these cases we would always observe closure in sufficient time.
For the two mass model, there is instead always at least one equilibrium solution, so we do not have
the same closure conditions. However in both of our models, collapse tends to occur when either one
or both masses is sufficiently close to 0, where the Bernoulli pressure term in the model dominates
and the masses accelerate to closure.

These results could infer that in real phonation, a sufficiently small glottal opening could cause
collapse, and so the oscillations can only be sustained if they remain bounded to a particular interval.
If the range of oscillations is too large and exceeds these bounds, the glottal opening could become
too small would cause a dominating pressure term, where it would be likely for closure to occur.

4.3 Conclusion

From our models, we can deduce that the principle factors in phonation are the stiffness of the
vocal cords and how they behave under the pressure from a steady Bernoulli flow from the lungs.
A two mass model characterises phonation as the motion of two stiffness-coupled components of a
single vocal fold. Under sufficient parameters, the two mass model reproduces the regular periodic
orbits that we see in the single mass model. However, the two mass model is much more sensitive
and shows more interesting behaviours, since it is a fourth order system describing two masses with
a stiffness coupling. In general, we observe quasiperiodic motion of the components of the vocal
folds, and the model accommodates that oscillations could continue indefinitely due to the lack of
any energy sink in the model. This quasiperiodic motion is a weighted sum of a harmonic series of
frequencies, which can be visualised using a Fourier transform. The two mass model is capable of
producing signals with discrete peaks in the frequency spectrum, but also with frequencies clustered
together more continuously. In the results we have observed, both components of the two mass
model appear to resonate with each other, since the frequency domains are often identical but the
power representations in the Fourier transforms are weighted slightly differently.

We have discussed approaches which could improve the model. To extend the study of models for
phonation, we could apply a more complex circulation of energy within the system. We could also
consider more kinds of fluid flow, for example by exploring how phonation may occur for turbulent,
unstable flows. In turn, it could be beneficial to develop the geometry of our models, and consider
multiple degrees of freedom in the motion of the modelled vocal folds. Were we to develop these
aspects of our model, it would be interesting to see how our results develop, however it is also
important that we are still able to reproduce fundamental results.

The two mass model we have studied is capable of producing quasiperiodic motions of two
stiffness-coupled components of a vocal cord. In formulating the model, we have made assumptions
that may limit the potential for valuable, intricate results that provide strong insight into the nature
of phonation. However, the results we have obtained provide forms of motion which we can analyse
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and relate to real phonation. Particularly, we showed that the results from the two mass model can
be analysed as a harmonic series of frequencies, which is a key characteristic of the acoustic structure
of voiced sounds.
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Appendix A

Computations

A.1 Unstable results
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Long scale time series (1, 0.5, 3, 0.3), initial conditions (1 3.79). Computed for 10 6  time units

 Black lines show the equilibrium solution (4.31,5.88)

Figure A.1: Long term behaviour of the model under parameters α = 1, λ = 0.5, β = 3, ω = 0.3.
Computed with ode45() using default tolerances. Oscillations tend towards an equilibrium solution
given computation on a large timescale. Initial conditions (1, 3.79). The equilibrium solution is
computed to be (4.31, 5.88). The behaviours diverge from the initial behaviours and slowly settle to
equilibria, despite the lack of any damping in the system. This is an unreliable solution, due to an
inadequately high tolerance in the computation.

We cannot expect a numerical method to produce results which would perfectly match analyt-
ical behaviours. However, it is sensible to deduce that there are families of behaviours that the
model may exhibit, which the numerical methods are incapable of reproducing. For example, the
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Parameters (2, 1.6, 3, 0.01). Initial positions (1.09, 2.68). Converging to equilibria.

Figure A.2: Parameters given are (1, 0.8, 3, 1). The masses oscillate near independently starting at
different positions (1.96, 0.83) at time t = 0. The figures, left to right, progressively increase the
time we run the computation. We can see in the left-most plot that the weak coupling leads to the
masses oscillating at independent frequencies. As running time increases, the masses converge to
their own equilibrium positions.
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convergence of results under reduced error tolerance. initial conditions [1.96, 0, 0.83, 0], params (1, 0.8, 3, 1).

Figure A.3: Changes in solution as AbsTol is decreased. Computations under parameters (1, 0.8, 3, 1)
with initial positions (1.96, 0.83). The computed solution fundamentally changes under stepping
down the tolerance.

computation shows that the initial quasiperiodic behaviour of Figure 3.14, which eventually settles
to the stable equilibrium as shown in Figure A.1, can be shown to be invalid through computing
the energy constant shown in Figure 3.16. Since the computation of the energy constant for this
problem progressively decreases, we could guess that the quasiperiodic motions will instead continue
indefinitely as shown in the early region of the time series.

The numerical solver struggles with the unstable equilibrium solutions, since near these points,
the ODE is extremely sensitive to minute differences in the numerical values. Due to finite precision
floating point arithmetic, it is extremely difficult to produce consistent results near the unstable
equilibria numerically. In combination with the stiffness coupling, there are often heavily unbalanced
forces on each mass, for example if an unstable equilibrium lies between the two masses. Figures A.4
and A.5 show analysis of computations where the behaviour has diverged from a consistent result.
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Figure A.4: Solution from ode45() for the problem seen in Figures 3.14 and 3.16. Without reducing
the tolerance of the solver, the solution diverges.

Figure A.5: Another example of the Poincaré map, for the computation shown earlier in Figure
A.1. We have shown that this result is not reliable, since we can compute that the energy constant
diverges. As we can see, the orbits break out of a pattern and the points on the Poincaré map begin
to converge.

The time series slowly breaks out of quasiperiodic orbits and begins to converge towards a stable
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equilibrium, while the reliable solution in Figure 3.16 shows continuous quasiperiodic behaviour.
Figure A.3 shows a change in results when reducing the AbsTol parameter for the MATLAB

ode45() function. The figures show that decreasing the error tolerance can fundamentally change
the numerical solution, especially where closure is not observed for tolerance of order 10−5, but is
observed for 10−10. Recall that AbsTol is a lower bound on the magnitude of the solution that
MATLAB will compute. Clearly, the closure of the model, being the case of a mass approaching
zero, is affected by how MATLAB handles solutions that approach zero.
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Appendix B

MATLAB Scripts

B.1 Single mass model

This code produces computations of the single mass model. It also includes plotting functions for
the curves which represent trajectories in the phase portrait.

%% ODE Solver using ode45

tspan=[0,20];

%initial conditions. this field should be edited for new results

xinit=[0.2, 0];

q=0.1; k=0.1;

mu = 1;

[t, x] = ode45(@(t,x) OscODE(t,x,mu,q), tspan, xinit)

b=x(:,1);

bdot=x(:,2);

%plot the computation

hold on

plot(t,b)

hold off

%compute equilibrium solutions and store

b_1 = fzero(@(b) OscODE2(t,b,mu,q),0.4)

b_2 = fzero(@(b) OscODE2(t,b,mu,q),0.6)

%% KE Curves Plotter

hold on

fplot(@(x) sqrt(F(x,mu,q) - F(b_1,mu,q)), [0 2])

fplot(@(x) sqrt(F(x,mu,q) - F(b_2,mu,q)), [0 2])
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fplot(@(x) sqrt(F(x,mu,q) + F(b_1,mu,q)), [0 2])

fplot(@(x) sqrt(F(x,mu,q) + F(b_2,mu,q)), [0 2])

fplot(@(x) sqrt(F(x,mu,q) - (F(b_2,mu,q) - F(b_1,mu,q))), [0 2])

fplot(@(x) sqrt(F(x,mu,q) - (F(b_2,mu,q) + F(b_1,mu,q))), [0 2])

fplot(0,[0 2],’k-’)

hold off

%% Functions

function dbdt = OscODE(t, x, mu, q)

b=x(1);

bdot=x(2);

dbdt=zeros(size(x));

dbdt(1) = bdot;

dbdt(2) = 1 - q - b - (mu*power(q,2))/(2*power(b,2));

end

function d2b = OscODE2(t, b, mu, q)

% used for computing equilibria

d2b = 1 - q - b - (mu.*power(q,2))/(2*power(b,2));

end

function out = F(b,mu,q)

out = (1-q)*b - (b^2)/2 + (mu*q^2)/(2*b);

end

B.2 Two mass model

This is the code used to compute results for the two mass model. Should be run separately by
section. For a quick result, run the first section, then “stationary points and general equilibria
solvers”, then the implementation of ode45. Also includes code for computing eigenvalues near an
equilibrium, plotting graphics of the equilibrium solutions, and extra functions for verification and
computation.

%% Two Mass Model - Normalised ODE Attempt 3

% final nondimensionalisation

%set the required constants
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% alpha is quotient of second mass by first mass, we specify only its

% inverse alpha_inv = m1/m2 since we only ever divide by alpha.

% lambda is the quotient of their support spring stiffnesses k2/k1.

% beta is proportional to the forcing pressure at lung.

% omega is the quotient of the coupling stiffness by spring 1, i.e. if we

% know omega and lambda, you can find the stiffness k_2.

alpha_inv = 1;

lambda = 0.8;

beta = 3;

omega = 0.3;

%% Stationary points and general equilibria solvers

%one-dimensional solvers for individual stationary points, neglecting the

%stiffness coupling

stat_point_11 = fzero(@(x) 1 - x + beta*(1 - power(x, -2)),[1e-5 power(2*beta, 1/3)]);

stat_point_12 = fzero(@(x) 1 - x + beta*(1 - power(x, -2)),[power(2*beta, 1/3), 10]);

stat_point_21 = fzero(@(x) lambda*(1 - x) + beta*(1 - power(x, -2)),[1e-5 power(2*beta/lambda, 1/3)]);

stat_point_22 = fzero(@(x) lambda*(1 - x) + beta*(1 - power(x, -2)),[power(2*beta, 1/3), 10]);

%solver problem to find equilibria. MUST take vertical vector input

init_search_point = [stat_point_12; stat_point_22];

[steady_soln,fval] = fsolve(@(v) zeroesFunction2(v,lambda,beta,omega),init_search_point);

x_equilibrium = steady_soln(1);

y_equilibrium = steady_soln(2);

%% Eigenvalue computation

df1dx = partDf1(x_equilibrium,beta,omega);

df1dy = omega;

df2dx = omega;

df2dy = partDf2(y_equilibrium,lambda,beta,omega);

jcbn = [

0, 1, 0, 0;

df1dx, 0, df1dy, 0;

0, 0, 0, 1;

alpha_inv*df2dx, 0, alpha_inv*df2dy, 0;

];

eig_vals = eig(jcbn)

% plot the eigenvalues in the complex plane with real, imag axes

hold on

for val = eig_vals

plot([-5 5],[0 0],’k-’)
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plot([0 0],[-5 5],’k-’)

plot(real(val),imag(val),’rx’,’MarkerSize’,8)

end

hold off

%% Contour graphic of equilibrium solutions

x_axis = [-5:0.05:15];

y_axis = [-5:0.05:15]’;

z_axis_1 = 1 - x_axis + beta*(1-1./(x_axis.^2)) + omega*(y_axis-x_axis);

z_axis_2 = lambda*(1 - y_axis) + beta*(1-1./(y_axis.^2)) + omega*(x_axis-y_axis);

hold on

contour(x_axis,y_axis,z_axis_1,[-0.001,0,0.001],’b-’)

contour(x_axis,y_axis,z_axis_2,[-0.001,0,0.001],’r-’)

plot([-5 15],[-5 15],’g-’)

hold off

%% Solver - Implementation of ODE45

%enter initial conditions

opts = odeset(’AbsTol’,1e-20,’RelTol’,1e-12);

tspan = [0 100];

init = [stat_point_12, 0, stat_point_22, 0];

[t,x] = ode45(@(t,x) twoMassModel(t,x,alpha_inv, lambda, beta, omega),tspan,init,opts);

E = totalEnergy(x(:,1),x(:,2),x(:,3),x(:,4),alpha_inv,lambda,beta,omega);

% plot different representations

hold on

%plot(x(:,1), x(:,2),’b’);

%plot(x(:,3), x(:,4),’r’);

plot(t, x(:,1))

plot(t, x(:,3))

%plot(t,E)

%plot(x(:,1),x(:,3))

%hold off

%% Les functiones

%the ODE function on two masses taking parameters alpha, lambda, beta,

%omega

function dhdt = twoMassModel(t,x,alpha_inv,lambda,beta,omega)

%take inputs, initialise the h variables
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dhdt = zeros(size(x));

h_1 = x(1);

dh_1 = x(2);

h_2 = x(3);

dh_2 = x(4);

%compute the equation

dhdt(1) = dh_1;

dhdt(2) = 1 - h_1 + beta*(1-1/(h_1)^2) + omega*(h_2-h_1);

dhdt(3) = dh_2;

dhdt(4) = alpha_inv*(lambda*(1 - h_2) + beta*(1-1/(h_2)^2) + omega*(h_1-h_2));

end

function out_vector = zeroesFunction2(v,lambda,beta,omega)

x = v(1);

y = v(2);

out_x = 1-x + beta*(1-(1./(x.^2))) + omega.*(y-x);

out_y = lambda*(1-y) + beta*(1-(1./(y.^2))) + omega.*(x-y);

out_vector = [out_x; out_y];

end

%partial derivatives of f1 and f2

function out = partDf1(x,beta,omega)

out = -1 + 2*beta*power(x,-3) - omega;

end

function out = partDf2(x,lambda,beta,omega)

out = -lambda + 2*beta*power(x,-3) - omega;

end

% conserved energy term

function vec = totalEnergy(x1,v1,x2,v2,alpha_inv,lambda,beta,omega)

kinetic_energy_term = (v1.^2 + (alpha_inv^-1)*(v2.^2))/2;

x_potential_term = (1+beta)*x1 - (x1.^2)/2 + beta./x1;

y_potential_term = (lambda+beta)*x2 - lambda*(x2.^2)/2 + beta./x2;

mixed_term = -omega*((x1-x2).^2)/2;

vec = kinetic_energy_term - x_potential_term - y_potential_term - mixed_term;

end

function starting_pts = findStatPoints(lambda,beta)

stat_point_11 = fzero(@(x) 1 - x + beta*(1 - power(x, -2)),[1e-5 power(2*beta, 1/3)]);

stat_point_12 = fzero(@(x) 1 - x + beta*(1 - power(x, -2)),[power(2*beta, 1/3), 10]);

stat_point_21 = fzero(@(x) lambda*(1 - x) + beta*(1 - power(x, -2)),[1e-5 power(2*beta/lambda, 1/3)]);

stat_point_22 = fzero(@(x) lambda*(1 - x) + beta*(1 - power(x, -2)),[power(2*beta, 1/3), 10]);
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starting_pts = [

stat_point_11, stat_point_12;

stat_point_21, stat_point_22

];

end

function [equilibria_x,equilibria_y] = findEquilibria(sp11,sp12,sp21,sp22,lambda,beta,omega)

%opts_2 = optimset()

steady_soln_11 = fsolve(@(v) zeroesFunction2(v,lambda,beta,omega),[sp11,sp21]);

steady_soln_12 = fsolve(@(v) zeroesFunction2(v,lambda,beta,omega),[sp11,sp22]);

steady_soln_21 = fsolve(@(v) zeroesFunction2(v,lambda,beta,omega),[sp12,sp21]);

steady_soln_22 = fsolve(@(v) zeroesFunction2(v,lambda,beta,omega),[sp12,sp22]);

if any([steady_soln_11 steady_soln_12 steady_soln_21 steady_soln_22]<0)

equilibria_x = [

missing missing;

missing missing

];

equilibria_y = [

missing missing;

missing missing

];

end

equilibria_x = [

steady_soln_11(1), steady_soln_12(1);

steady_soln_21(1), steady_soln_22(1)

];

equilibria_y = [

steady_soln_11(2), steady_soln_12(2);

steady_soln_21(2), steady_soln_22(2)

];

end

B.3 Fourier transform and sound file generation

This code requires that a computation of the two mass model has been performed and is currently
stored.

%% Sound System

%Generates a playable wave form and a Fourier spectrum from data provided

%by the vocal fold model.

%use nufft() for fourier transform

%fourier analysis

D1 = x(:,1);

D2 = x(:,3);

N = length(t);
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L = t(N);

F = (0:N-1)/L;

%fourier transform

M1 = nufft(D1, t);

M2 = nufft(D2, t);

%conversion to the power of the frequencies

P1 = abs(M1.^2)/N;

P2 = abs(M2.^2)/N;

%% Generate Sound Files

%reinterpolate the signal to a uniform step

t_new = linspace(0,L,N);

V1 = interp1(t,D1,t_new);

V2 = interp1(t,D2,t_new);

%normalise the signal to [-1, 1]

signal_u = max(max(V1),max(V2));

signal_l = min(min(V1),min(V2));

translation = -(signal_u+signal_l)/2

scaling = 2/(signal_u-signal_l)

V1 = scaling*(V1+translation);

V2 = scaling*(V2+translation);

%suggested playback frequency. 1000 time units is one second

playback_frequency = floor(1000*N/L)

filename="result_name";

info = "parameters alpha=%d, lambda=%d, beta = %d, omega = %d. IV [%d %d]";

comment = sprintf(info,1/alpha_inv,lambda,beta,omega,init(1),init(3));

audiowrite(filename+"a.wav",V1,playback_frequency,’Comment’,comment);

audiowrite(filename+"b.wav",V2,playback_frequency,’Comment’,comment);

figure1 = plot(F,P1); ylim([0 2e5]); saveas(figure1,filename+"a",’epsc’);

figure2 = plot(F,P2); ylim([0 2e5]); saveas(figure2,filename+"b",’epsc’);
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